Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
FASEB J ; 38(8): e23619, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38661031

ABSTRACT

Exosomes, which are small membrane-encapsulated particles derived from all cell types, are emerging as important mechanisms for intercellular communication. In addition, exosomes are currently envisioned as potential carriers for the delivery of drugs to target tissues. The natural population of exosomes is very variable due to the limited amount of cargo components present in these small vesicles. Consequently, common components of exosomes may play a role in their function. We have proposed that membrane phospholipids could be a common denominator in the effect of exosomes on cellular functions. In this regard, we have previously shown that liposomes made of phosphatidylcholine (PC) or phosphatidylserine (PS) induced a robust alteration of macrophage (Mϕ) gene expression. We herewith report that these two phospholipids modulate gene expression in Mϕs by different mechanisms. PS alters cellular responses by the interaction with surface receptors, particularly CD36. In contrast, PC is captured by a receptor-independent process and likely triggers an activity within endocytic vesicles. Despite this difference in the capture mechanisms, both lipids mounted similar gene expression responses. This investigation suggests that multiple mechanisms mediated by membrane phospholipids could be participating in the alteration of cellular functions by exosomes.


Subject(s)
Exosomes , Macrophages , Phosphatidylserines , Macrophages/metabolism , Animals , Mice , Phosphatidylserines/metabolism , Exosomes/metabolism , Phosphatidylcholines/metabolism , Inflammation/metabolism , Phospholipids/metabolism , Mice, Inbred C57BL , CD36 Antigens/metabolism , CD36 Antigens/genetics , Liposomes
2.
Cell Stress Chaperones ; 28(6): 1001-1012, 2023 11.
Article in English | MEDLINE | ID: mdl-38001371

ABSTRACT

Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes. Our results showed that hHep1 interacts peripherally with liposomes formed by phosphatidylserine and cardiolipin and remains partially structured, exhibiting similar affinities for both. In addition, after being added to the cell membrane, recombinant hHep1 was incorporated by cells in a dose-dependent manner. Interestingly, the association of HSPA9 with hHep1 improved the incorporation of these proteins into the lipid bilayer. These results demonstrated that hHep1 can interact with lipids also present in the plasma membrane, indicating roles for this cochaperone outside of mitochondria.


Subject(s)
Lipid Bilayers , Liposomes , Humans , Cell Membrane/metabolism , Lipid Bilayers/metabolism , Liposomes/metabolism , Mitochondria/metabolism , Molecular Chaperones/metabolism
3.
Nat Commun ; 14(1): 5031, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596294

ABSTRACT

Mitochondrial quality control is critical for cardiac homeostasis as these organelles are responsible for generating most of the energy needed to sustain contraction. Dysfunctional mitochondria are normally degraded via intracellular degradation pathways that converge on the lysosome. Here, we identified an alternative mechanism to eliminate mitochondria when lysosomal function is compromised. We show that lysosomal inhibition leads to increased secretion of mitochondria in large extracellular vesicles (EVs). The EVs are produced in multivesicular bodies, and their release is independent of autophagy. Deletion of the small GTPase Rab7 in cells or adult mouse heart leads to increased secretion of EVs containing ubiquitinated cargos, including intact mitochondria. The secreted EVs are captured by macrophages without activating inflammation. Hearts from aged mice or Danon disease patients have increased levels of secreted EVs containing mitochondria indicating activation of vesicular release during cardiac pathophysiology. Overall, these findings establish that mitochondria are eliminated in large EVs through the endosomal pathway when lysosomal degradation is inhibited.


Subject(s)
Extracellular Vesicles , Lysosomes , Animals , Mice , Mitochondria , Biological Transport , Multivesicular Bodies
4.
Membranes (Basel) ; 13(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36837644

ABSTRACT

Phospholipids are the major components of cellular membranes and cell-derived vesicles such as exosomes. They are also key components of artificial lipid nanoparticles, allowing the encapsulation and transport of various biological or chemical cargos. Both artificial and natural vesicles could be captured by cells delivering important information that could modulate cellular functions. However, the potential contribution of phospholipids within vesicles altering cellular physiology has been largely underestimated. Here, we showed that macrophages exposed to liposomes made exclusively with palmitoyl oleoyl phosphatidylcholine (POPC) in vivo resulted in a dramatic alteration of the transcriptome profile. Differential gene expression analysis indicated that the exposure to POPC liposomes resulted in a change in the expression of 1598 genes. Moreover, 146 genes were upregulated, and 69 genes were downregulated by incubation with POPC liposomes in contrast to palmitoyl oleoyl phosphatidylserine (POPS) exposure. Signaling pathway impact analysis revealed that 24 signaling pathways were significantly modulated after exposure to POPC liposomes, including the activation of the NF-κB pathway. Indeed, the expression of several cytokines (TNF-α, IL-6, and IL-10) and chemokines (Cxcl1 and Cxcl2) were increased. These observations were validated by the exposure of macrophages to POPC liposomes in culture conditions. In addition, the proteomic analysis of peritoneal cells exposed to POPC liposomes performed by mass spectrometry revealed that the expression of 107 proteins was downregulated after POPC exposure, whereas the expression of 12 proteins was significantly upregulated by this treatment, including seven proteins involved in the neutrophil degranulation pathway. This observation was confirmed by flow cytometry analysis showing the rapid recruitment of neutrophils into the peritoneal cavity after POPC exposure. Overall, these findings demonstrate that the presence of phospholipids within artificial and natural vesicles could be responsible for changes in the function of target cells.

5.
bioRxiv ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36824711

ABSTRACT

Mitochondrial quality control is critical for cardiac homeostasis as these organelles are responsible for generating most of the energy needed to sustain contraction. Dysfunctional mitochondria are normally degraded via intracellular degradation pathways that converge on the lysosome. Here, we identified an alternative mechanism to eliminate mitochondria when lysosomal function is compromised. We show that lysosomal inhibition leads to increased secretion of mitochondria in large extracellular vesicles (EVs). The EVs are produced in multivesicular bodies, and their release is independent of autophagy. Deletion of the small GTPase Rab7 in cells or adult mouse heart leads to increased secretion of EVs containing ubiquitinated cargos, including intact mitochondria. The secreted EVs are captured by macrophages without activating inflammation. Hearts from aged mice or Danon disease patients have increased levels of secreted EVs containing mitochondria indicating activation of vesicular release during cardiac pathophysiology. Overall, these findings establish that mitochondria are eliminated in large EVs through the endosomal pathway when lysosomal degradation is inhibited.

6.
Sci Rep ; 12(1): 19764, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396724

ABSTRACT

Appendicoliths are commonly found obstructing the lumen of the appendix at the time of appendectomy. To identify factors that might contribute to their formation we investigated the composition of appendicoliths using laser ablation inductively coupled plasma mass spectroscopy, gas chromatography, polarized light microscopy, X-ray crystallography and protein mass spectroscopy. Forty-eight elements, 32 fatty acids and 109 human proteins were identified within the appendicoliths. The most common elements found in appendicoliths are calcium and phosphorus, 11.0 ± 6.0 and 8.2 ± 4.2% weight, respectively. Palmitic acid (29.7%) and stearate (21.3%) are the most common fatty acids. Some stearate is found in crystalline form-identifiable by polarized light microscopy and confirmable by X-ray crystallography. Appendicoliths have an increased ratio of omega-6 to omega-3 fatty acids (ratio 22:1). Analysis of 16 proteins common to the appendicoliths analyzed showed antioxidant activity and neutrophil functions (e.g. activation and degranulation) to be the most highly enriched pathways. Considered together, these preliminary findings suggest oxidative stress may have a role in appendicolith formation. Further research is needed to determine how dietary factors such as omega-6 fatty acids and food additives, redox-active metals and the intestinal microbiome interact with genetic factors to predispose to appendicolith formation.


Subject(s)
Appendix , Fatty Acids , Humans , Stearates , Appendectomy , Chromatography, Gas
7.
BMC Med Genomics ; 14(1): 138, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34030677

ABSTRACT

BACKGROUND: Older aged adults and those with pre-existing conditions are at highest risk for severe COVID-19 associated outcomes. METHODS: Using a large dataset of genome-wide RNA-seq profiles derived from human dermal fibroblasts (GSE113957) we investigated whether age affects the expression of pattern recognition receptor (PRR) genes and ACE2, the receptor for SARS-CoV-2. RESULTS: Extremes of age are associated with increased expression of selected PRR genes, ACE2 and four genes that encode proteins that have been shown to interact with SAR2-CoV-2 proteins. CONCLUSIONS: Assessment of PRR expression might provide a strategy for stratifying the risk of severe COVID-19 disease at both the individual and population levels.


Subject(s)
COVID-19/genetics , COVID-19/virology , Gene Expression Regulation , Peptidyl-Dipeptidase A/genetics , Receptors, Pattern Recognition/genetics , Receptors, Virus/genetics , SARS-CoV-2/metabolism , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Dermis/pathology , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Middle Aged , RNA-Seq , Receptors, Virus/metabolism , Young Adult
8.
Cell Stress Chaperones ; 26(4): 671-684, 2021 07.
Article in English | MEDLINE | ID: mdl-34003451

ABSTRACT

Heat shock proteins (HSP) are critical elements for the preservation of cellular homeostasis by participating in an array of biological processes. In addition, HSP play an important role in cellular protection from various environmental stresses. HSP are part of a large family of different molecular mass polypeptides, displaying various expression patterns, subcellular localizations, and diversity functions. An unexpected observation was the detection of HSP on the cell surface. Subsequent studies have demonstrated that HSP have the ability to interact and penetrate lipid bilayers by a process initiated by the recognition of phospholipid heads, followed by conformational changes, membrane insertion, and oligomerization. In the present study, we described the interaction of HSPA8 (HSC70), the constitutive cytosolic member of the HSP70 family, with lipid membranes. HSPA8 showed high selectivity for negatively charged phospholipids, such as phosphatidylserine and cardiolipin, and low affinity for phosphatidylcholine. Membrane insertion was mediated by a spontaneous process driven by increases in entropy and diminished by the presence of ADP or ATP. Finally, HSPA8 was capable of driving into the lipid bilayer HSP90 that does not display any lipid biding capacity by itself. This observation suggests that HSPA8 may act as a membrane chaperone.


Subject(s)
HSC70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Phospholipids/metabolism , Cardiolipins/metabolism , Cell Membrane/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response/drug effects , Heat-Shock Response/physiology , Humans , Liposomes/metabolism , Molecular Chaperones/metabolism
9.
Infect Immun ; 89(4)2021 03 17.
Article in English | MEDLINE | ID: mdl-33431705

ABSTRACT

Sepsis is a life-threatening condition that arises from a poorly regulated inflammatory response to pathogenic organisms. Current treatments are limited to antibiotics, fluid resuscitation, and other supportive therapies. New targets for monitoring disease progression and therapeutic interventions are therefore critically needed. We previously reported that lipocalin-2 (Lcn2), a bacteriostatic mediator with potent proapoptotic activities, was robustly induced in sepsis. Other studies showed that Lcn2 was a predictor of mortality in septic patients. However, how Lcn2 is regulated during sepsis is poorly understood. We evaluated how IkBζ, an inducer of Lcn2, was regulated in sepsis using both the cecal ligation and puncture (CLP) and endotoxemia (lipopolysaccharide [LPS]) animal models. We show that Nfkbiz, the gene encoding IkBζ, was rapidly stimulated but, unlike Lcn2, whose expression persists during sepsis, mRNA levels of Nfkbiz decline to near basal levels several hours after its induction. In contrast, we observed that IkBζ expression remained highly elevated in septic animals following CLP but not LPS, indicating the occurrence of a CLP-specific mechanism that extends IkBζ half-life. By using an inhibitor of IkBζ, we determined that the expression of Lcn2 was largely controlled by IkBζ. Altogether, these data indicate that the high IkBζ expression in tissues likely contributes to the elevated expression of Lcn2 in sepsis. Since IkBζ is also capable of promoting or repressing other inflammatory genes, it might exert a central role in sepsis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Disease Susceptibility , I-kappa B Proteins/metabolism , Sepsis/etiology , Sepsis/metabolism , Shock, Septic/etiology , Shock, Septic/metabolism , Animals , Animals, Outbred Strains , Disease Models, Animal , Lipocalin-2/genetics , Lipocalin-2/metabolism , Lipopolysaccharides/adverse effects , Macrophages/immunology , Macrophages/metabolism , Mice , Sepsis/pathology , Shock, Septic/pathology
10.
Annu Rev Pharmacol Toxicol ; 61: 135-157, 2021 01 06.
Article in English | MEDLINE | ID: mdl-32857688

ABSTRACT

Although numerous environmental exposures have been suggested as triggers for preclinical autoimmunity, only a few have been confidently linked to autoimmune diseases. For disease-associated exposures, the lung is a common site where chronic exposure results in cellular toxicity, tissue damage, inflammation, and fibrosis. These features are exacerbated by exposures to particulate material, which hampers clearance and degradation, thus facilitating persistent inflammation. Coincident with exposure and resulting pathological processes is the posttranslational modification of self-antigens, which, in concert with the formation of tertiary lymphoid structures containing abundant B cells, is thought to promote the generation of autoantibodies that in some instances demonstrate major histocompatibility complex restriction. Under appropriate gene-environment interactions, these responses can have diagnostic specificity. Greater insight into the molecular and cellular requirements governing this process, especially those that distinguish preclinical autoimmunity from clinical autoimmunedisease, may facilitate determination of the significance of environmental exposures in human autoimmune disease.


Subject(s)
Autoimmune Diseases , Autoimmunity , Autoantibodies , Environmental Exposure , Humans , Inflammation
11.
Biochim Biophys Acta Biomembr ; 1862(11): 183436, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32781155

ABSTRACT

Mitochondrial Hsp70 (HSPA9, mtHsp70, mortalin) in conjunction with a complex set of other proteins is involved in the transport of polypeptides across the mitochondrial matrix. This observation allows us to hypothesize that HSPA9 might interact with membranes directly, similarly to other Hsp70s. Thus, we investigated whether human HSPA9 could also get inserted into lipid membranes. Human HSPA9 was incubated with liposomes made of lipids found within the mitochondrial membrane, such as 1', 3'-bis [1, 2-dimyristoyl-sn-glycero-3-phospho]-glycerol (CL), palmitoyl-oleoyl phosphocholine (POPC), palmitoyl-oleoyl phosphoserine (POPS), and palmitoyl-oleoyl phosphoethanolamine (POPE). HSPA9 displayed a predilection for CL and POPS, and low affinity for POPC and POPE, suggesting that the proteins have high specificity for negatively charged phospholipids. Then, liposomes were made with a composition resembling either the outer or inner mitochondrial membrane (OMM or IMM, respectively). We observed that HSPA9 has a higher affinity for IMM than OMM, which is consistent with the higher content of CL in the IMM. A comparison for the incorporation into POPS or CL liposomes by HSPA9 or HSPA1 indicated that both proteins behaved very similarly when exposed to CL liposomes, but differently with POPS liposomes, which was further corroborated by their susceptibility to proteinase K digestion after incorporation into liposomes. The measurement of thermodynamic parameters also showed that the interaction of both proteins with CL and POPS liposomes was different. Overall, our data showed that HSPA9 is prone to interact with membranes resembling the IMM that may be important for its role in the translocation of proteins into the mitochondria.


Subject(s)
Cardiolipins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Lipid Bilayers/chemistry , Mitochondrial Membranes/chemistry , Mitochondrial Proteins/chemistry , Humans , Liposomes
12.
Cell Stress Chaperones ; 25(6): 979-991, 2020 11.
Article in English | MEDLINE | ID: mdl-32725381

ABSTRACT

Heat shock proteins (HSPs) are ubiquitous polypeptides expressed in all living organisms that participate in several basic cellular processes, including protein folding, from which their denomination as molecular chaperones originated. There are several HSPs, including HSPA5, also known as 78-kDa glucose-regulated protein (GRP78) or binding immunoglobulin protein (BIP) that is an ER resident involved in the folding of polypeptides during their translocation into this compartment prior to the transition to the Golgi network. HSPA5 is detected on the surface of cells or secreted into the extracellular environment. Surface HSPA5 has been proposed to have various roles, such as receptor-mediated signal transduction, a co-receptor for soluble ligands, as well as a participant in tumor survival, proliferation, and resistance. Recently, surface HSPA5 has been reported to be a potential receptor of some viruses, including the novel SARS-CoV-2. In spite of these observations, the association of HSPA5 within the plasma membrane is still unclear. To gain information about this process, we studied the interaction of HSPA5 with liposomes made of different phospholipids. We found that HSPA5 has a high affinity for negatively charged phospholipids, such as palmitoyl-oleoyl phosphoserine (POPS) and cardiolipin (CL). The N-terminal and C-terminal domains of HSPA5 were independently capable of interacting with negatively charged phospholipids, but to a lesser extent than the full-length protein, suggesting that both domains are required for the maximum insertion into membranes. Interestingly, we found that the interaction of HSPA5 with negatively charged liposomes promotes an oligomerization process via intermolecular disulfide bonds in which the N-terminus end of the protein plays a critical role.


Subject(s)
Heat-Shock Proteins/metabolism , Liposomes/metabolism , Phospholipids/chemistry , Amino Acid Sequence , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , COVID-19 , Calorimetry , Cardiolipins/chemistry , Cardiolipins/metabolism , Coronavirus Infections/pathology , Coronavirus Infections/virology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Humans , Liposomes/chemistry , Pandemics , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Phospholipids/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Domains , Protein Multimerization , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2 , Sequence Alignment
13.
Cell Stress Chaperones ; 25(6): 847-856, 2020 11.
Article in English | MEDLINE | ID: mdl-32319023

ABSTRACT

Urbanization in low-income countries represents an important inflection point in the epidemiology of disease, with rural populations experiencing high rates of chronic and recurrent infections and urban populations displaying a profile of noncommunicable diseases. To investigate if urbanization alters the expression of genes encoding mitochondrial proteins, we queried gene microarray data from rural and urban populations living in Morocco (GSE17065). The R Bioconductor packages edgeR and limma were used to identify genes with different expression. The experimental design was modeled upon location and sex. Nuclear genes encoding mitochondrial proteins were identified from the MitoCarta2.0 database. Of the 1158 genes listed in the MitoCarta2.0 database, 847 genes (73%) were available for analysis in the Moroccan dataset. The urban-rural comparison with the greatest environmental differences showed that 76.5% of the MitoCarta2.0 genes were differentially expressed, with 97% of the genes having an increased expression in the urban area. Enrichment analysis revealed 367 significantly enriched pathways (adjusted p value < 0.05), with oxidative phosphorylation, insulin secretion and glucose regulations (adj.p values = 6.93E-16) being the top three. Four significantly perturbed KEGG disease pathways were associated with urbanization-three degenerative neurological diseases (Huntington's, Alzheimer's, and Parkinson's diseases) and herpes simplex infection (false discover rate corrected p value (PGFdr) < 0.2). Mitochondrial RNA metabolic processing and translational elongation were the biological processes that had the greatest enrichment (enrichment ratios 14.0 and 14.8, respectively, FDR < 0.5). Our study links urbanization in Morocco with changes in the expression of the nuclear genes encoding mitochondrial proteins.


Subject(s)
Cell Nucleus/genetics , Gene Expression Regulation , Mitochondrial Proteins/genetics , Rural Population , Urban Population , Gene Expression Profiling , Geography , Humans , Mitochondrial Proteins/metabolism , Morocco , Signal Transduction/genetics
14.
Int J Biol Macromol ; 146: 320-331, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31899237

ABSTRACT

The Hsp70 family of heat shock proteins plays a critical function in maintaining cellular homeostasis within various subcellular compartments. The human mitochondrial Hsp70 (HSPA9) has been associated with cellular death, senescence, cancer and neurodegenerative diseases, which is the rational for the name mortalin. It is well documented that mortalin, such as other Hsp70s, is prone to self-aggregation, which is related to mitochondria biogenesis failure. Here, we investigated the assembly, structure and function of thermic aggregates/oligomers of recombinant human mortalin and Hsp70-1A (HSPA1A). Summarily, both Hsp70 thermic aggregates have characteristics of supramolecular assemblies. They display characteristic organized structures and partial ATPase activity, despite their nanometric size. Indeed, we observed that the interaction of these aggregates/oligomers with liposomes is similar to monomeric Hsp70s and, finally, they were non-toxic over neuroblastoma cells. These findings revealed that high molecular mass oligomers of mortalin and Hsp70-1A preserved some of the fundamental functions of these proteins.


Subject(s)
HSP70 Heat-Shock Proteins/chemistry , Mitochondrial Proteins/chemistry , Protein Aggregates , Protein Multimerization , Humans
15.
Shock ; 53(4): 384-390, 2020 04.
Article in English | MEDLINE | ID: mdl-31389904

ABSTRACT

Once thought of as an inert fatty tissue present only to provide insulation for the peritoneal cavity, the omentum is currently recognized as a vibrant immunologic organ with a complex structure uniquely suited for defense against pathogens and injury. The omentum is a source of resident inflammatory and stem cells available to participate in the local control of infection, wound healing, and tissue regeneration. It is intimately connected with the systemic vasculature and communicates with the central nervous system and the hypothalamic pituitary adrenal axis. Furthermore, the omentum has the ability to transit the peritoneal cavity and sequester areas of inflammation and injury. It contains functional, immunologic units commonly referred to as "milky spots" that contribute to the organ's immune response. These milky spots are complex nodules consisting of macrophages and interspersed lymphocytes, which are gateways for the infiltration of inflammatory cells into the peritoneal cavity in response to infection and injury. The omentum contains far greater complexity than is currently conceptualized in clinical practice and investigations directed at unlocking its beneficial potential may reveal new mechanisms underlying its vital functions and the secondary impact of omentectomy for the staging and treatment of a variety of diseases.


Subject(s)
Intraabdominal Infections/prevention & control , Omentum/immunology , Wound Healing/physiology , Humans
16.
Cell Stress Chaperones ; 24(5): 947-956, 2019 09.
Article in English | MEDLINE | ID: mdl-31338686

ABSTRACT

Increasing evidence shows that heat shock proteins (hsp) escape the cytosol gaining access to the extracellular environment, acting as signaling agents. Since the majority of these proteins lack the information necessary for their export via the classical secretory pathway, attention has been focused on alternative releasing mechanisms. Crossing the plasma membrane is a major obstacle to the secretion of a cytosolic protein into the extracellular milieu. Several mechanisms have been proposed, including direct interaction with the plasma membrane or their release within extracellular vesicles (ECV). HSPB1 (Hsp27), which belongs to the small hsp family, was detected within the membrane of ECV released from stressed HepG2 cells. To further investigate this finding, we studied the interaction of HSPB1 with lipid membranes using liposomes. We found that HSPB1 interacted with liposomes made of palmitoyl oleoyl phosphatidylserine (POPS), palmitoyl oleoyl phosphatidylcholine (POPC), and palmitoyl oleoyl phosphatidylglycerol (POPG), with different characteristics. Another member of the small hsp family, HSPB5 (αB-crystallin), has also been detected within ECV released from HeLa cells transfected with this gene. This protein was found to interact with liposomes as well, but differently than HSPB1. To address the regions interacting with the membrane, proteoliposomes were digested with proteinase K and the protected domains within the liposomes were identified by mass spectroscopy. We observed that large parts of HSPB1 and HSPB5 were embedded within the liposomes, particularly the alpha-crystallin domain. These observations suggest that the interaction with lipid membranes may be part of the mechanisms of export of these proteins.


Subject(s)
Extracellular Vesicles/metabolism , Heat-Shock Proteins/metabolism , Liposomes/metabolism , Membranes/metabolism , Molecular Chaperones/metabolism , Phospholipids/metabolism , alpha-Crystallin B Chain/metabolism , HeLa Cells , Hep G2 Cells , Humans , Phosphatidylcholines/metabolism , Phosphatidylglycerols/metabolism , Phosphatidylserines/metabolism
17.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R160-R168, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31091156

ABSTRACT

Sepsis is a major clinical challenge, with therapy limited to supportive interventions. Therefore, the search for novel remedial approaches is of great importance. We addressed whether hyperbaric oxygen therapy (HBOT) could improve the outcome of sepsis using an acute experimental mouse model. Sepsis was induced in male CD-1 mice by cecal ligation and puncture (CLP) tailored to result in 80-90% mortality within 72 h of the insult. After CLP, mice were randomized into two groups receiving HBOT or not at different times after the initial insult or subjected to multiple HBOT treatments. HBOT conditions were 98% oxygen pressurized to 2.4 atmospheres for 1 h. HBOT within 1 h after CLP resulted in 52% survival in comparison with mice that did not receive the treatment (13% survival). Multiple HBOT at 1 and 6 h or 1, 6, and 21 h displayed an increase in survival of >50%, but they were not significantly different from a single treatment after 1 h of CLP. Treatments at 6 or 21 h after CLP, excluding the 1 h of treatment, did not show any protective effect. Early HBO treatment did not modify bacterial counts after CLP, but it was associated with decreased expression of TNF-α, IL-6, and IL-10 expression in the liver within 3 h after CLP. The decrease of cytokine expression was reproduced in cultured macrophages after exposure to HBOT. Early HBOT could be of benefit in the treatment of sepsis, and the protective mechanism may be related to a reduction in the systemic inflammatory response.


Subject(s)
Disease Models, Animal , Hyperbaric Oxygenation , Sepsis/therapy , Animals , Cecum/injuries , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation , Ligation , Lipopolysaccharides/toxicity , Macrophages/metabolism , Male , Mice , Mitochondria/metabolism , Oxygen Consumption , Punctures
18.
Biochim Biophys Acta Gen Subj ; 1863(12): 129299, 2019 12.
Article in English | MEDLINE | ID: mdl-30742953

ABSTRACT

BACKGROUND: Human exposure to mercury leads to a variety of pathologies involving numerous organ systems including the immune system. A paucity of epidemiological studies and suitable diagnostic criteria, however, has hampered collection of sufficient data to support a causative role for mercury in autoimmune diseases. Nevertheless, there is evidence that mercury exposure in humans is linked to markers of inflammation and autoimmunity. This is supported by experimental animal model studies, which convincingly demonstrate the biological plausibility of mercury as a factor in the pathogenesis of autoimmune disease. SCOPE OF THE REVIEW: In this review, we focus on ability of mercury to elicit inflammatory and autoimmune responses in both humans and experimental animal models. MAJOR CONCLUSIONS: Although subtle differences exist, the inflammatory and autoimmune responses elicited by mercury exposure in humans and experimental animal models show many similarities. Proinflammatory cytokine expression, lymphoproliferation, autoantibody production, and nephropathy are common outcomes. Animal studies have revealed significant strain dependent differences in inflammation and autoimmunity suggesting genetic regulation. This has been confirmed by the requirement for individual genes as well as genome wide association studies. Importantly, many of the genes required for mercury-induced inflammation and autoimmunity are also required for idiopathic systemic autoimmunity. A notable difference is that mercury-induced autoimmunity does not require type I IFN. This observation suggests that mercury-induced autoimmunity may arise by both common and specific pathways, thereby raising the possibility of devising criteria for environmentally associated autoimmunity. GENERAL SIGNIFICANCE: Mercury exposure likely contributes to the pathogenesis of autoimmunity.


Subject(s)
Autoimmune Diseases , Autoimmunity/drug effects , Gene Expression Regulation , Mercury/toxicity , Animals , Autoimmune Diseases/chemically induced , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Genome-Wide Association Study , Humans , Inflammation/chemically induced , Inflammation/immunology , Inflammation/pathology
19.
Shock ; 52(6): 604-611, 2019 12.
Article in English | MEDLINE | ID: mdl-30601409

ABSTRACT

The omentum is a large mesenchymal fibro-fatty tissue with remarkable healing capability. It is also rich in immune cells, including macrophages and lymphocytes, within particular structures named milky spots. Clinical observations indicate a high incidence of peritonitis after the removal of the omentum suggesting that it may play a role in sepsis. To test this possibility, male CD-1 mice underwent simultaneous omentectomy and cecal ligation and puncture (CLP), omentectomy-sham operation and CLP alone, and mortality was documented within 72 h post the insults. A significant increase in mortality was observed in mice subjected to omentectomy and CLP in comparison with CLP alone. Mortality was correlated with an increase in cytokine gene expression within the lung after omentectomy and CLP as opposed to CLP alone. However, no differences in bacterial load were observed within the peritoneum or blood between groups. To test the long-term effect of omentectomy, mice were subjected to omentum removal or sham operation, allowed to recover from surgery for 14 or 28 days, and then both were subjected to CLP. In these cases, no differences in mortality were observed between the groups suggesting that the lack of omentum triggers a compensatory mechanism. Finally, omentectomy and sham operation altered the composition of peritoneal immune cells with the disappearance of F4/80 macrophages and the appearance of a new population of F4/80 macrophages within 1 or 14 days post-surgery. The F4/80 positive cells reappeared after 28 days following the procedures. All of these observations suggest that the omentum plays an early role in the outcome from sepsis.


Subject(s)
Macrophages, Peritoneal/metabolism , Omentum/metabolism , Sepsis/metabolism , Animals , Disease Models, Animal , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred ICR , Omentum/pathology , Sepsis/pathology
20.
FASEB J ; 33(2): 2995-3009, 2019 02.
Article in English | MEDLINE | ID: mdl-30325674

ABSTRACT

Extracellular vesicles (ECVs) are heterogeneous membrane-enclosed structures containing proteins, nucleic acids, and lipids that participate in intercellular communication by transferring their contents to recipient cells. Although most of the attention has been directed at the biologic effect of proteins and microRNA, the contribution of phospholipids present in ECVs on cellular activation has not been extensively addressed. We investigated the biologic effect of phosphatidylserine (PS) and phosphatidylcholine (PC), 2 phospholipids highly abundant in ECVs. A transcriptomic analysis revealed that ∼4700 genes were specifically modified by exposing peritoneal macrophages to PS or PC liposomes in vivo. Among them, the expression of several chemokines and cytokines was highly upregulated by PS liposome treatment, translating into a massive neutrophil infiltration of the peritoneum capable of neutralizing a septic polymicrobial insult. Both the l and d stereoisomers of PS induced the same response, suggesting that the effect was related to the negative charge of the phospholipid head. We concluded that an increase in the internal negative charge of the cell triggers a signaling cascade activating an innate immune response capable of controlling infection.-Cauvi, D. M., Hawisher, D., Dores-Silva, P. R., Lizardo, R. E., De Maio, A. Macrophage reprogramming by negatively charged membrane phospholipids controls infection.


Subject(s)
Cellular Reprogramming , Coinfection/prevention & control , Extracellular Vesicles/drug effects , Macrophages, Peritoneal/drug effects , Phosphatidylcholines/pharmacology , Phosphatidylserines/pharmacology , Sepsis/prevention & control , Animals , Cells, Cultured , Coinfection/immunology , Coinfection/metabolism , Coinfection/microbiology , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Female , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred ICR , Sepsis/immunology , Sepsis/metabolism , Sepsis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...