Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 1(1): 33-45, 2001 Apr.
Article in English | MEDLINE | ID: mdl-12702461

ABSTRACT

Glucose-induced cAMP signalling in Saccharomyces cerevisiae requires extracellular glucose detection via the Gpr1-Gpa2 G-protein coupled receptor system and intracellular glucose-sensing that depends on glucose uptake and phosphorylation. The glucose uptake requirement can be fulfilled by any glucose carrier including the Gal2 permease or by intracellular hydrolysis of maltose. Hence, the glucose carriers do not seem to play a regulatory role in cAMP signalling. Also the glucose carrier homologues, Snf3 and Rgt2, are not required for glucose-induced cAMP synthesis. Although no further metabolism beyond glucose phosphorylation is required, neither Glu6P nor ATP appears to act as metabolic trigger for cAMP signalling. This indicates that a regulatory function may be associated with the hexose kinases. Consistently, intracellular acidification, another known trigger of cAMP synthesis, can bypass the glucose uptake requirement but not the absence of a functional hexose kinase. This may indicate that intracellular acidification can boost a downstream effect that amplifies the residual signal transmitted via the hexose kinases when glucose uptake is too low.


Subject(s)
Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits , Gene Expression Regulation, Fungal , Glucose/metabolism , Receptors, G-Protein-Coupled , Saccharomyces cerevisiae/metabolism , Signal Transduction , Biological Transport , Fungal Proteins/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Hexokinase/metabolism , Hydrogen-Ion Concentration , Phosphorylation , Receptors, Cell Surface/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Enzyme Microb Technol ; 26(9-10): 819-825, 2000 Jun 01.
Article in English | MEDLINE | ID: mdl-10862891

ABSTRACT

Yeast cells growing in the presence of glucose or a related rapidly-fermented sugar differ strongly in a variety of physiological properties compared to cells growing in the absence of glucose. Part of these differences appear to be caused by the protein kinase A (PKA) and related signal transduction pathways. Addition of glucose to cells previously deprived of glucose triggers cAMP accumulation, which is apparently mediated by the Gpr1-Gpa2 G-protein coupled receptor system. However, the resulting effect on PKA-controlled properties is only transient when there is no complete growth medium present. When an essential nutrient is lacking, the cells arrest in the stationary phase G0. At the same time they acquire all characteristics of cells with low PKA activity, even if there is ample glucose present. When the essential nutrient is added again, a similar PKA-dependent protein phosphorylation cascade is triggered as observed after addition of glucose to glucose-deprived cells, but which is not cAMP-mediated. Because the pathway involved requires a fermentable carbon source and a complete growth medium, at least for its sustained activation, it has been called "fermentable growth medium (FGM)-induced pathway."

3.
EMBO J ; 17(12): 3326-41, 1998 Jun 15.
Article in English | MEDLINE | ID: mdl-9628870

ABSTRACT

Adenylate cyclase activity in Saccharomyces cerevisiae is dependent on Ras proteins. Both addition of glucose to glucose-deprived (derepressed) cells and intracellular acidification trigger an increase in the cAMP level in vivo. We show that intracellular acidification, but not glucose, causes an increase in the GTP/GDP ratio on the Ras proteins independent of Cdc25 and Sdc25. Deletion of the GTPase-activating proteins Ira1 and Ira2, or expression of the RAS2(val19) allele, causes an enhanced GTP/GDP basal ratio and abolishes the intracellular acidification-induced increase. In the ira1Delta ira2Delta strain, intracellular acidification still triggers a cAMP increase. Glucose also did not cause an increase in the GTP/GDP ratio in a strain with reduced feedback inhibition of cAMP synthesis. Further investigation indicated that feedback inhibition by cAPK on cAMP synthesis acts independently of changes in the GTP/GDP ratio on Ras. Stimulation by glucose was dependent on the Galpha-protein Gpa2, whose deletion confers the typical phenotype associated with a reduced cAMP level: higher heat resistance, a higher level of trehalose and glycogen and elevated expression of STRE-controlled genes. However, the typical fluctuation in these characteristics during diauxic growth on glucose was still present. Overexpression of Ras2(val19) inhibited both the acidification- and glucose-induced cAMP increase even in a protein kinase A-attenuated strain. Our results suggest that intracellular acidification stimulates cAMP synthesis in vivo at least through activation of the Ras proteins, while glucose acts through the Gpa2 protein. Interaction of Ras2(val19) with adenylate cyclase apparently prevents its activation by both agonists.


Subject(s)
Cyclic AMP/metabolism , Fungal Proteins/metabolism , GTP-Binding Protein alpha Subunits , GTP-Binding Proteins/metabolism , Glucose/metabolism , Heterotrimeric GTP-Binding Proteins , Saccharomyces cerevisiae/metabolism , Signal Transduction , ras Proteins/metabolism , Adenylyl Cyclases/metabolism , Cell Cycle Proteins/metabolism , Cyclic AMP/biosynthesis , Down-Regulation , Hydrogen-Ion Concentration , Phosphoprotein Phosphatases/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins , rap GTP-Binding Proteins , ras-GRF1
SELECTION OF CITATIONS
SEARCH DETAIL
...