Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanophotonics ; 11(15): 3421-3436, 2022 Aug.
Article in English | MEDLINE | ID: mdl-38144043

ABSTRACT

The article elucidates the physical mechanism behind the generation of superior-contrast and high-resolution label-free images using an optical waveguide. Imaging is realized by employing a high index contrast multi-moded waveguide as a partially coherent light source. The modes provide near-field illumination of unlabeled samples, thereby repositioning the higher spatial frequencies of the sample into the far-field. These modes coherently scatter off the sample with different phases and are engineered to have random spatial distributions within the integration time of the camera. This mitigates the coherent speckle noise and enhances the contrast (2-10) × as opposed to other imaging techniques. Besides, the coherent scattering of the different modes gives rise to fluctuations in intensity. The technique demonstrated here is named chip-based Evanescent Light Scattering (cELS). The concepts introduced through this work are described mathematically and the high-contrast image generation process using a multi-moded waveguide as the light source is explained. The article then explores the feasibility of utilizing fluctuations in the captured images along with fluorescence-based techniques, like intensity-fluctuation algorithms, to mitigate poor-contrast and diffraction-limited resolution in the coherent imaging regime. Furthermore, a straight waveguide is demonstrated to have limited angular diversity between its multiple modes and therefore, for isotropic sample illumination, a multiple-arms waveguide geometry is used. The concepts introduced are validated experimentally via high-contrast label-free imaging of weakly scattering nanosized specimens such as extra-cellular vesicles (EVs), liposomes, nanobeads and biological cells such as fixed and live HeLa cells.

2.
Pharmaceutics ; 13(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919040

ABSTRACT

The rapid development of nanomedicine and drug delivery systems calls for new and effective characterization techniques that can accurately characterize both the properties and the behavior of nanosystems. Standard methods such as dynamic light scattering (DLS) and fluorescent-based assays present challenges in terms of system's instability, machine sensitivity, and loss of tracking ability, among others. In this study, we explore some of the downsides of batch-mode analyses and fluorescent labeling, while introducing quantitative phase microscopy (QPM) as a label-free complimentary characterization technique. Liposomes were used as a model nanocarrier for their therapeutic relevance and structural versatility. A successful immobilization of liposomes in a non-dried setup allowed for static imaging conditions in an off-axis phase microscope. Image reconstruction was then performed with a phase-shifting algorithm providing high spatial resolution. Our results show the potential of QPM to localize subdiffraction-limited liposomes, estimate their size, and track their integrity over time. Moreover, QPM full-field-of-view images enable the estimation of a single-particle-based size distribution, providing an alternative to the batch mode approach. QPM thus overcomes some of the drawbacks of the conventional methods, serving as a relevant complimentary technique in the characterization of nanosystems.

3.
Int J Mol Sci ; 21(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32659908

ABSTRACT

The rather limited success of translation from basic research to clinical application has been highlighted as a major issue in the nanomedicine field. To identify the factors influencing the applicability of nanosystems as drug carriers and potential nanomedicine, we focused on following their fate through fluorescence-based assays, namely flow cytometry and imaging. These methods are often used to follow the nanocarrier internalization and targeting; however, the validity of the obtained results strictly depends on how much the nanosystem's fate can be inferred from the fate of fluorescent dyes. To evaluate the parameters that affect the physicochemical and biological stability of the labeled nanosystems, we studied the versatility of two lipid dyes, TopFluor®-PC and Cy5-DSPE, in conventional liposomes utilizing well-defined in vitro assays. Our results suggest that the dye can affect the major characteristics of the system, such as vesicle size and zeta-potential. However, a nanocarrier can also affect the dye properties. Medium, temperature, time, fluorophore localization and its concentration, as well as their interplay, affect the outcome of tracing experiments. Therefore, an in-depth characterization of the labeled nanosystem should be fundamental to understand the conditions that validate the results within the screening process in optimization of nanocarrier.


Subject(s)
Fluorescent Dyes/chemistry , Liposomes/chemistry , Animals , Cell Line , Drug Carriers/chemistry , Fluorescence , Humans , Lipids/chemistry , Mice , Nanomedicine/methods , Nanoparticles/chemistry , Particle Size , RAW 264.7 Cells
4.
Mol Pharm ; 15(4): 1488-1494, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29462563

ABSTRACT

The diffusion coefficient (also known as diffusivity) of an active pharmaceutical ingredient (API) is a fundamental physicochemical parameter that affects passive diffusion through biological barriers and, as a consequence, bioavailability and biodistribution. However, this parameter is often neglected, and it is quite difficult to find diffusion coefficients of small molecules of pharmaceutical relevance in the literature. The available methods to measure diffusion coefficients of drugs all suffer from limitations that range from poor sensitivity to high selectivity of the measurements or the need for dedicated instrumentation. In this work, a simple but reliable method based on time-resolved concentration measurements by UV-visible spectroscopy in an unstirred aqueous environment was developed. This method is based on spectroscopic measurement of the variation of the local concentration of a substance during spontaneous migration of molecules, followed by standard mathematical treatment of the data in order to solve Fick's law of diffusion. This method is extremely sensitive and results in highly reproducible data. The technique was also employed to verify the influence of the environmental characteristics (i.e., ionic strength and presence of complexing agents) on the diffusivity. The method can be employed in any research laboratory equipped with a standard UV-visible spectrophotometer and could become a useful and straightforward tool in order to characterize diffusion coefficients in physiological conditions and help to better understand the drug permeability process.


Subject(s)
Pharmaceutical Preparations/chemistry , Water/chemistry , Diffusion , Light , Osmolar Concentration , Permeability , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...