Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Pers Med ; 13(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003902

ABSTRACT

The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy.

2.
Comput Struct Biotechnol J ; 21: 5395-5407, 2023.
Article in English | MEDLINE | ID: mdl-38022694

ABSTRACT

Neurodegenerative diseases (ND) are heterogeneous disorders of the central nervous system that share a chronic and selective process of neuronal cell death. A computational approach to investigate shared genetic and specific loci was applied to 5 different ND: Amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Multiple sclerosis (MS), and Lewy body dementia (LBD). The datasets were analyzed separately, and then we compared the obtained results. For this purpose, we applied a genetic correlation analysis to genome-wide association datasets and revealed different genetic correlations with several human traits and diseases. In addition, a clumping analysis was carried out to identify SNPs genetically associated with each disease. We found 27 SNPs in AD, 6 SNPs in ALS, 10 SNPs in PD, 17 SNPs in MS, and 3 SNPs in LBD. Most of them are located in non-coding regions, with the exception of 5 SNPs on which a protein structure and stability prediction was performed to verify their impact on disease. Furthermore, an analysis of the differentially expressed miRNAs of the 5 examined pathologies was performed to reveal regulatory mechanisms that could involve genes associated with selected SNPs. In conclusion, the results obtained constitute an important step toward the discovery of diagnostic biomarkers and a better understanding of the diseases.

3.
Funct Integr Genomics ; 23(4): 293, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37682415

ABSTRACT

Sporadic Alzheimer's disease (AD) is a complex neurological disorder characterized by many risk loci with potential associations with different traits and diseases. AD, characterized by a progressive loss of neuronal functions, manifests with different symptoms such as decline in memory, movement, coordination, and speech. The mechanisms underlying the onset of AD are not always fully understood, but involve a multiplicity of factors. Early diagnosis of AD plays a central role as it can offer the possibility of early treatment, which can slow disease progression. Currently, the methods of diagnosis are cognitive testing, neuroimaging, or cerebrospinal fluid analysis that can be time-consuming, expensive, invasive, and not always accurate. In the present study, we performed a genetic correlation analysis using genome-wide association statistics from a large study of AD and UK Biobank, to examine the association of AD with other human traits and disorders. In addition, since hippocampus, a part of cerebral cortex could play a central role in several traits that are associated with AD; we analyzed the gene expression profiles of hippocampus of AD patients applying 4 different artificial neural network models. We found 65 traits correlated with AD grouped into 9 clusters: medical conditions, fluid intelligence, education, anthropometric measures, employment status, activity, diet, lifestyle, and sexuality. The comparison of different 4 neural network models along with feature selection methods on 5 Alzheimer's gene expression datasets showed that the simple basic neural network model obtains a better performance (66% of accuracy) than other more complex methods with dropout and weight regularization of the network.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Genome-Wide Association Study , Chromosome Mapping , Hippocampus , Neural Networks, Computer
4.
Hum Genet ; 142(8): 1173-1183, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36773064

ABSTRACT

Leveraging genome-wide association statistics generated from a large study of amyotrophic lateral sclerosis (ALS; 29,612 cases and 122,656 controls) and UK Biobank (UKB; 4,024 phenotypes, up to 361,194 participants), we conducted a phenome-wide analysis of ALS genetic liability and identified 46 genetically correlated traits, such as fluid intelligence score (rg = - 0.21, p = 1.74 × 10-6), "spending time in pub or social club" (rg = 0.24, p = 2.77 × 10-6), non-work related walking (rg = - 0.25, p = 1.95 × 10-6), college education (rg = - 0.15, p = 7.08 × 10-5), "ever diagnosed with panic attacks (rg = 0.39, p = 4.24 × 10-5), and "self-reported other gastritis including duodenitis" (rg = 0.28, p = 1.4 × 10-3). To assess the putative directionality of these genetic correlations, we conducted a latent causal variable analysis, identifying significant genetic causality proportions (gcp) linking ALS genetic liability to seven traits. While the genetic component of "self-reported other gastritis including duodenitis" showed a causal effect on ALS (gcp = 0.50, p = 1.26 × 10-29), the genetic liability to ALS is potentially causal for multiple traits, also including an effect on "ever being diagnosed with panic attacks" (gcp = 0.79, p = 5.011 × 10-15) and inverse effects on "other leisure/social group activities" (gcp = 0.66, p = 1 × 10-4) and prospective memory result (gcp = 0.35, p = 0.005). Our subsequent Mendelian randomization analysis indicated that some of these associations may be due to bidirectional effects. In conclusion, this phenome-wide investigation of ALS polygenic architecture highlights the widespread pleiotropy linking this disorder with several health domains.


Subject(s)
Amyotrophic Lateral Sclerosis , Duodenitis , Gastritis , Humans , Amyotrophic Lateral Sclerosis/genetics , Genome-Wide Association Study , Phenotype , Mendelian Randomization Analysis
5.
Hum Cell ; 36(2): 493-514, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36528839

ABSTRACT

RNA-binding proteins (RBPs) have emerged as important players in multiple biological processes including transcription regulation, splicing, R-loop homeostasis, DNA rearrangement, miRNA function, biogenesis, and ribosome biogenesis. A large number of RBPs had already been identified by different approaches in various organisms and exhibited regulatory functions on RNAs' fate. RBPs can either directly or indirectly interact with their target RNAs or mRNAs to assume a key biological function whose outcome may trigger disease or normal biological events. They also exert distinct functions related to their canonical and non-canonical forms. This review summarizes the current understanding of a wide range of RBPs' functions and highlights their emerging roles in the regulation of diverse pathways, different physiological processes, and their molecular links with diseases. Various types of diseases, encompassing colorectal carcinoma, non-small cell lung carcinoma, amyotrophic lateral sclerosis, and Severe acute respiratory syndrome coronavirus 2, aberrantly express RBPs. We also highlight some recent advances in the field that could prompt the development of RBPs-based therapeutic interventions.


Subject(s)
COVID-19 , MicroRNAs , Neoplasms , Nervous System Diseases , Humans , MicroRNAs/genetics , RNA-Binding Proteins/genetics
6.
PLoS One ; 17(11): e0277235, 2022.
Article in English | MEDLINE | ID: mdl-36395113

ABSTRACT

Modern society grew rapidly over the last few decades and this led to an alarming increase in air pollutants and a worsening of the human health, especially in relation to the respiratory system. Indeed, chronic respiratory diseases were the third main cause of death in 2017, with over 3 million of deaths. Furthermore, the pollution has considerable consequences both for burden medical expenses and environmental. However, the mechanisms linking pollutants to the onset of these diseases remain unclear. Thus, in this study we addressed this problem through the United Kingdom BioBank database, analyzing 170 genome-wide association studies (103 related to respiratory diseases and 67 related to pollutants). We analyzed the genetic correlations and causal relationships of these traits, leveraging the summary statistics and bioinformatics packages such as Linkage Disequilibrium Score Regression and Latent Causal Variable. We obtained 158 significant genetic correlations and subsequently we analyzed them through the Latent Causal Variable analysis, obtaining 20 significant causal relationships. The most significant were between "Workplace full of chemicals or other fumes: Sometimes" and "Condition that has ever been diagnosed by a doctor: Asthma" and between "Workplace very dusty: Sometimes" and "Condition that has ever been diagnosed by a doctor: Emphysema or chronic bronchitis". Finally, we identified single nucleotide polymorphisms independently associated with sveral pollutants to analyze the genes and pathways that could be involved in the onset of the aforementioned respiratory system disorders and that could be useful clinical target. This study highlighted how crucial are the air condition of the working environments and the type of transport used in the onset of respiratory-related morbidity. Based on that, we also suggested some interventions, in order to improve quality life and develop new and eco-friendly society and life style, such as improving indoor air circulation, the use of public transport and urban reforestation.


Subject(s)
Air Pollutants , Environmental Pollutants , Respiratory Tract Diseases , Humans , Genome-Wide Association Study , Air Pollutants/adverse effects , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/genetics , Respiratory System
7.
Int J Mol Sci ; 23(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35683018

ABSTRACT

Prostate cancer (PC) is a male common neoplasm and is the second leading cause of cancer death in American men. PC is traditionally diagnosed by the evaluation of prostate secreted antigen (PSA) in the blood. Due to the high levels of false positives, digital rectal examination and transrectal ultrasound guided biopsy are necessary in uncertain cases with elevated PSA levels. Nevertheless, the high mortality rate suggests that new PC biomarkers are urgently needed to help clinical diagnosis. In a previous study, we have identified a network of genes, altered in high Gleason Score (GS) PC (GS ≥ 7), being regulated by miR-153. Until now, no publication has explained the mechanism of action of miR-153 in PC. By in vitro studies, we found that the overexpression of miR-153 in high GS cell lines is required to control cell proliferation, migration and invasion rates, targeting Kruppel-like factor 5 (KLF5). Moreover, miR-153 could be secreted by exosomes and microvesicles in the microenvironment and, once entered into the surrounding tissue, could influence cellular growth. Being upregulated in high GS human PC, miR-153 could be proposed as a circulating biomarker for PC diagnosis.


Subject(s)
MicroRNAs , Prostatic Neoplasms , Cell Proliferation/genetics , Humans , Male , MicroRNAs/genetics , Neoplasm Grading , Prostate-Specific Antigen , Prostatic Neoplasms/metabolism , Tumor Microenvironment
8.
Biomedicines ; 10(3)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35327434

ABSTRACT

Unbalanced diets and altered micronutrient intake are prevalent in the aging adult population. We conducted a systematic review to appraise the evidence regarding the association between single (α-carotene, ß-carotene, lutein, lycopene, ß-cryptoxanthin) or total carotenoids and frailty syndrome in the adult population. The literature was screened from study inception to December 2021, using six different electronic databases. After establishing inclusion criteria, two independent researchers assessed the eligibility of 180 retrieved articles. Only 11 fit the eligibility requirements, reporting five carotenoid entries. No exclusion criteria were applied to outcomes, assessment tools, i.e., frailty constructs or surrogates, recruitment setting, general health status, country, and study type (cohort or cross-sectional). Carotenoid exposure was taken as either dietary intake or serum concentrations. Cross-sectional design was more common than longitudinal design (n = 8). Higher dietary and plasma levels of carotenoids, taken individually or cumulatively, were found to reduce the odds of physical frailty markedly, and the evidence showed consistency in the direction of association across all selected studies. Overall, the methodological quality was rated from moderate (27%) to high (73%). Prevention of micronutrient deficiencies has some potential to counteract physical decline. Considering carotenoids as biological markers, when monitoring micronutrient status, stressing increased fruit and vegetable intake may be part of potential multilevel interventions to prevent or better manage disability.

9.
Comput Struct Biotechnol J ; 20: 864-873, 2022.
Article in English | MEDLINE | ID: mdl-35222845

ABSTRACT

Prostate cancer (PC) is one of the major male cancers. Differential diagnosis of PC is indispensable for the individual therapy, i.e., Gleason score (GS) that describes the grade of cancer can be used to choose the appropriate therapy. However, the current techniques for PC diagnosis and prognosis are not always effective. To identify potential markers that could be used for differential diagnosis of PC, we analyzed miRNA-mRNA interactions and we build specific networks for PC onset and progression. Key differentially expressed miRNAs for each GS were selected by calculating three parameters of network topology measures: the number of their single regulated mRNAs (NSR), the number of target genes (NTG) and NSR/NTG. miRNAs that obtained a high statistically significant value of these three parameters were chosen as potential biomarkers for computational validation and pathway analysis. 20 miRNAs were identified as key candidates for PC. 8 out of 20 miRNAs (miR-25-3p, miR-93-3p, miR-122-5p, miR-183-5p, miR-615-3p, miR-7-5p, miR-375, and miR-92a-3p) were differentially expressed in all GS and proposed as biomarkers for PC onset. In addition, "Extracellular-receptor interaction", "Focal adhesion", and "microRNAs in cancer" were significantly enriched by the differentially expressed target genes of the identified miRNAs. miR-10a-5p was found to be differentially expressed in GS 6, 7, and 8 in PC samples. 3 miRNAs were identified as PC GS-specific differentially expressed miRNAs: miR-155-5p was identified in PC samples with GS 6, and miR-142-3p and miR-296-3p in PC samples with GS 9. The efficacy of 20 miRNAs as potential biomarkers was revealed with a Random Forest classification using an independent dataset. The results demonstrated our 20 miRNAs achieved a better performance (AUC: 0.73) than miRNAs selected with Boruta algorithm (AUC: 0.55), a method for the automated feature extraction. Studying miRNA-mRNA associations, key miRNAs were identified with a computational approach for PC onset and progression. Further experimental validations are needed for future translational development.

10.
Sci Rep ; 12(1): 693, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027621

ABSTRACT

Breast cancer is a heterogeneous disease classified into four main subtypes with different clinical outcomes, such as patient survival, prognosis, and relapse. Current genetic tests for the differential diagnosis of BC subtypes showed a poor reproducibility. Therefore, an early and correct diagnosis of molecular subtypes is one of the challenges in the clinic. In the present study, we identified differentially expressed genes, long non-coding RNAs and RNA binding proteins for each BC subtype from a public dataset applying bioinformatics algorithms. In addition, we investigated their interactions and we proposed interacting biomarkers as potential signature specific for each BC subtype. We found a network of only 2 RBPs (RBM20 and PCDH20) and 2 genes (HOXB3 and RASSF7) for luminal A, a network of 21 RBPs and 53 genes for luminal B, a HER2-specific network of 14 RBPs and 30 genes, and a network of 54 RBPs and 302 genes for basal BC. We validated the signature considering their expression levels on an independent dataset evaluating their ability to classify the different molecular subtypes with a machine learning approach. Overall, we achieved good performances of classification with an accuracy >0.80. In addition, we found some interesting novel prognostic biomarkers such as RASSF7 for luminal A, DCTPP1 for luminal B, DHRS11, KLC3, NAGS, and TMEM98 for HER2, and ABHD14A and ADSSL1 for basal. The findings could provide preliminary evidence to identify putative new prognostic biomarkers and therapeutic targets for individual breast cancer subtypes.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Gene Expression/genetics , Genetic Testing/methods , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/classification , Diagnosis, Differential , Female , Humans , Machine Learning , Prognosis
11.
J Biomol Struct Dyn ; 40(13): 5956-5964, 2022 08.
Article in English | MEDLINE | ID: mdl-33499760

ABSTRACT

Non-obstructive azoospermia (NOA) is the most clinical problem in case of infertility. About 70% of NOA patients are idiopathic with uncharacterized molecular mechanisms. This study aimed to analyze the possible pathogenic miRNA-target gene interaction and lncRNA-miRNA association involved in NOA. In the current study, differentially expressed (DE) nRNAs, miRNAs and lncRNAs were determined using the microarray dataset and statistical software R. miRNAs-mRNA and miRNA-lncRNA interactions were identified and the base-pair binding between the seed region of miRNAs and complementary nucleotides in 3' UTR of mRNAs were analyzed. The influence of the validated single nucleotide polymorphisms (SNPs) was described by calculating the minimum free energy (MFE) of the interaction. A total of 74 mRNAs, 14 miRNAs, and 10 lncRNAs were identified to have significant differential expression in testicular tissue between patients and the fertile group. Four of the DE-mRNAs and all of the reported DE-miRNAs were upregulated. In addition, all of the represented DE-lncRNAs were showed to be downregulated. miR-509-5p and miR-27b-3p were found to interact with target gene polo-like kinase 1 (PLK1) and Cysteine-rich secretory protein2 (CRISP2), respectively. Rs550967205 (A > G) positioned at 3' UTR CRISP2 and rs544604911 (T > C) located at 3' UTR PLK1, with lowest MFE in miRNA-mRNA interaction, were assumed to have possible pathogenic roles linked to spermatogenesis arrest. The results of the study provide new clues to understand the regulatory roles of miRNAs and lncRNAs in the pathogenesis and diagnosis of idiopathic azoospermia. Communicated by Ramaswamy H. Sarma.


Subject(s)
Azoospermia , MicroRNAs , RNA, Long Noncoding , 3' Untranslated Regions/genetics , Azoospermia/diagnosis , Azoospermia/genetics , Cell Adhesion Molecules , Gene Regulatory Networks , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Foods ; 10(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34945679

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal disease related to upper and lower motor neurons degeneration. Although the environmental and genetic causes of this disease are still unclear, some factors involved in ALS onset such as oxidative stress may be influenced by diet. A higher risk of ALS has been correlated with a high fat and glutamate intake and ß-methylamino-L-alanine. On the contrary, a diet based on antioxidant and anti-inflammatory compounds, such as curcumin, creatine, coenzyme Q10, vitamin E, vitamin A, vitamin C, and phytochemicals could reduce the risk of ALS. However, data are controversial as there is a discrepancy among different studies due to a limited number of samples and the many variables that are involved. In addition, an improper diet could lead to an altered microbiota and consequently to an altered metabolism that could predispose to the ALS onset. In this review we summarized some research that involve aspects related to ALS such as the epidemiology, the diet, the eating behaviour, the microbiota, and the metabolic diseases. Further research is needed to better comprehend the role of diet and the metabolic diseases in the mechanisms leading to ALS onset and progression.

13.
J Clin Med ; 10(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34362180

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a complex disease with a late onset and is characterized by the progressive loss of muscular and respiratory functions. Although recent studies have partially elucidated ALS's mechanisms, many questions remain such as what the most important molecular pathways involved in ALS are and why there is such a large difference in ALS onset among different populations. In this study, we addressed this issue with a bioinformatics approach, using the United Kingdom Biobank (UKBB) and the European 1000 Genomes Project (1KG) in order to analyze the most ALS-representative single nucleotide polymorphisms (SNPs) that differ for minor allele frequency (MAF) between the United Kingdom population and some European populations including Finnish in Finland, Iberian population in Spain, and Tuscans in Italy. We found 84 SNPs associated with 46 genes that are involved in different pathways including: "Ca2+ activated K+ channels", "cGMP effects", "Nitric oxide stimulates guanylate cyclase", "Proton/oligopeptide cotransporters", and "Signaling by MAPK mutants". In addition, we revealed that 83% of the 84 SNPs can alter transcription factor-motives binding sites of 224 genes implicated in "Regulation of beta-cell development", "Transcription-al regulation by RUNX3", "Transcriptional regulation of pluripotent stem cells", and "FOXO-mediated transcription of cell death genes". In conclusion, the genes and pathways analyzed could explain the cause of the difference of ALS onset.

14.
Future Virol ; 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306168

ABSTRACT

Aim: SARS-CoV-2, an emerging betacoronavirus, is the causative agent of COVID-19. Currently, there are few specific and selective antiviral drugs for the treatment and vaccines to prevent contagion. However, their long-term effects can be revealed after several years, and new drugs for COVID-19 should continue to be investigated. Materials & methods: In the first step of our study we identified, through a gene expression analysis, several drugs that could act on the biological pathways altered in COVID-19. In the second step, we performed a docking simulation to test the properties of the identified drugs to target SARS-CoV-2. Results: The drugs that showed a higher binding affinity are bardoxolone (-8.78 kcal/mol), irinotecan (-8.40 kcal/mol) and pyrotinib (-8.40 kcal/mol). Conclusion: We suggested some drugs that could be efficient in treating COVID-19.

15.
Cells ; 10(6)2021 06 12.
Article in English | MEDLINE | ID: mdl-34204705

ABSTRACT

Coronavirus disease 2019 (COVID-19), a global pandemic, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2) is the receptor for SARS-CoV-2 and transmembrane serine protease 2 (TMPRSS2) facilitates ACE2-mediated virus entry. Moreover, the expression of ACE2 in the testes of infertile men is higher than normal, which indicates that infertile men may be susceptible to be infected and SARS-CoV-2 may cause reproductive disorder through the pathway induced by ACE2 and TMPRSS2. Little is known about the pathway regulation of ACE2 and TMPRSS2 expression in male reproductive disorder. Since the regulation of gene expression is mediated by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) at the post-transcriptional level, the aim of this study was to analyze the dysregulated miRNA-lncRNA interactions of ACE2 and TMPRSS2 in male reproductive disorder. Using bioinformatics analysis, we speculate that the predicted miRNAs including miR-125a-5p, miR-125b-5p, miR-574-5p, and miR-936 as regulators of ACE2 and miR-204-5p as a modulator of TMPRSS2 are associated with male infertility. The lncRNAs with a tissue-specific expression for testis including GRM7-AS3, ARHGAP26-AS1, BSN-AS1, KRBOX1-AS1, CACNA1C-IT3, AC012361.1, FGF14-IT1, AC012494.1, and GS1-24F4.2 were predicted. The identified miRNAs and lncRNAs are proposed as potential biomarkers to study the possible association between COVID-19 and male infertility. This study encourages further studies of miRNA-lncRNA interactions to explain the molecular mechanisms of male infertility in COVID-19 patients.


Subject(s)
COVID-19/complications , Gene Regulatory Networks , Infertility, Male/virology , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Adult , Angiotensin-Converting Enzyme 2/physiology , COVID-19/genetics , Computational Biology/methods , Computer Simulation , Gene-Environment Interaction , Humans , Infertility, Male/genetics , Male , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/physiology , Testis/metabolism , Testis/pathology , Testis/virology , Virus Internalization
16.
Medicina (Kaunas) ; 57(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809336

ABSTRACT

Background and Objectives: Breast cancer is a heterogeneous disease categorized into four subtypes. Previous studies have shown that copy number alterations of several genes are implicated with the development and progression of many cancers. This study evaluates the effects of DNA copy number alterations on gene expression levels in different breast cancer subtypes. Materials and Methods: We performed a computational analysis integrating copy number alterations and gene expression profiles in 1024 breast cancer samples grouped into four molecular subtypes: luminal A, luminal B, HER2, and basal. Results: Our analyses identified several genes correlated in all subtypes such as KIAA1967 and MCPH1. In addition, several subtype-specific genes that showed a significant correlation between copy number and gene expression profiles were detected: SMARCB1, AZIN1, MTDH in luminal A, PPP2R5E, APEX1, GCN5 in luminal B, TNFAIP1, PCYT2, DIABLO in HER2, and FAM175B, SENP5, SCAF1 in basal subtype. Conclusions: This study showed that computational analyses integrating copy number and gene expression can contribute to unveil the molecular mechanisms of cancer and identify new subtype-specific biomarkers.


Subject(s)
Breast Neoplasms , DNA Copy Number Variations , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins , Protein Phosphatase 2 , RNA-Binding Proteins , Transcriptome/genetics
17.
Diagnostics (Basel) ; 11(4)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810222

ABSTRACT

Radiomics allows the extraction quantitative features from imaging, as imaging biomarkers of disease. The objective of this exploratory study is to implement a reproducible radiomic-pipeline for the extraction of a magnetic resonance imaging (MRI) signature for prostate cancer (PCa) aggressiveness. One hundred and two consecutive patients performing preoperative prostate multiparametric magnetic resonance imaging (mpMRI) and radical prostatectomy were enrolled. Multiparametric images, including T2-weighted (T2w), diffusion-weighted and dynamic contrast-enhanced images, were acquired at 1.5 T. Ninety-three imaging features (Ifs) were extracted from segmentation of index lesion. Ifs were ranked based on a stability rank and redundant Ifs were excluded. Using unsupervised hierarchical clustering, patients were grouped on the basis of similar radiomic patterns, whose association with Gleason Grade Group (GGG), extracapsular extension (ECE), and nodal involvement (pN) was tested. Signatures composed by IFs from T2w-images and Apparent Diffusion Coefficient (ADC) maps were tested for the prediction of GGG, ECE, and pN. T2w radiomic pattern was associated with pN, ECE, and GGG (p = 0.027, 0.05, 0.03) and ADC radiomic pattern was associated with GGG (p = 0.004). The best performance was reached by the signature combing IFs from multiparametric images (0.88, 0.89, and 0.84 accuracy for GGG, pN, and ECE). A reliable multiparametric MRI radiomic signature was extracted, potentially able to predict PCa aggressiveness, to be further validated on an independent sample.

18.
Sci Rep ; 11(1): 6553, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753785

ABSTRACT

Triple negative breast cancer (TNBC) accounts for about a fifth of all breast cancers and includes a diverse group of cancers. The heterogeneity of TNBC and the lack of target receptors on the cell surface make it difficult to develop specific therapeutic treatments. These aspects cause the high negative prognosis of patients with this type of tumor. The analysis of the molecular profiles of TNBC samples has allowed a better characterization of this tumor, supporting the search for new reliable diagnostic markers. To this end, we have developed a bioinformatic approach to integrate networks of genes differentially expressed in basal breast cancer compared to healthy tissues, with miRNAs able to regulate their expression. We studied the role of these miRNAs in TNBC subtype cell lines. We therefore identified two miRNAs, namely miR-135b and miR-365, with a central role in regulating the altered functional pathways in basal breast cancer. These two miRNAs are differentially expressed in human TNBC immunohistochemistry-selected tissues, and their modulation has been shown to play a role in the proliferation of tumor control and its migratory and invasive capacity in TNBC subtype cell lines. From the perspective of personalized medicine, we managed to modulate the expression of the two miRNAs in organotypic cultures, suggesting their possible use as diagnostic and therapeutic molecules. miR-135b and miR-365 have a key role in TNBC, controlling proliferation and invasion. Their detection could be helpful in TNBC diagnosis, while their modulation could become a new therapeutic tool for TNBC.


Subject(s)
Biomarkers, Tumor , MicroRNAs/genetics , Phenotype , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Mesenchymal Stem Cells/metabolism , Molecular Targeted Therapy , Precision Medicine , Triple Negative Breast Neoplasms/therapy
19.
Entropy (Basel) ; 23(2)2021 02 11.
Article in English | MEDLINE | ID: mdl-33670375

ABSTRACT

The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or combinations of drugs that already exist in clinics. In this study, we developed a computational approach that integrates copy number alteration, gene expression, and a protein interaction network of 73 basal breast cancer samples. 2509 prognostic genes harboring a copy number alteration were identified using survival analysis, and a protein-protein interaction network considering the direct interactions was created. Each patient was described by a specific combination of seven altered hub proteins that fully characterize the 73 basal breast cancer patients. We suggested the optimal combination therapy for each patient considering drug-protein interactions. Our approach is able to confirm well-known cancer related genes and suggest novel potential drug target genes. In conclusion, we presented a new computational approach in breast cancer to deal with the intra-tumor heterogeneity towards personalized cancer therapy.

20.
Int J Mol Sci ; 22(2)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445780

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that have emerged as new potential epigenetic biomarkers. Here, we evaluate the efficacy of six circulating miRNA previously described in the literature as biomarkers for the diagnosis of temporal lobe epilepsy (TLE) and/or as predictive biomarkers to antiepileptic drug response. We measured the differences in serum miRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays in a cohort of 27 patients (14 women and 13 men; mean ± SD age: 43.65 ± 17.07) with TLE compared to 20 healthy controls (HC) matched for sex, age and ethnicity (11 women and 9 men; mean ± SD age: 47.5 ± 9.1). Additionally, patients were classified according to whether they had drug-responsive (n = 17) or drug-resistant (n = 10) TLE. We have investigated any correlations between miRNAs and several electroclinical parameters. Three miRNAs (miR-142, miR-146a, miR-223) were significantly upregulated in patients (expressed as average expression ± SD). In detail, miR-142 expression was 0.40 ± 0.29 versus 0.16 ± 0.10 in TLE patients compared to HC (t-test, p < 0.01), miR-146a expression was 0.15 ± 0.11 versus 0.07 ± 0.04 (t-test, p < 0.05), and miR-223 expression was 6.21 ± 3.65 versus 1.23 ± 0.84 (t-test, p < 0.001). Moreover, results obtained from a logistic regression model showed the good performance of miR-142 and miR-223 in distinguishing drug-sensitive vs. drug-resistant TLE. The results of this pilot study give evidence that miRNAs are suitable targets in TLE and offer the rationale for further confirmation studies in larger epilepsy cohorts.


Subject(s)
Biomarkers/blood , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Drug Resistance/genetics , Epilepsy, Temporal Lobe/blood , Epilepsy, Temporal Lobe/genetics , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged , Pilot Projects , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...