Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 100(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36205250

ABSTRACT

For baled silages, production of clostridial fermentation products can be exacerbated by exceeding normal moisture targets (45% to 55%), and/or by the application of dairy slurry before harvest. Our objectives were to test a microbial inoculant as a mitigant of clostridial products in high-moisture, grass-legume (52% ± 13.8% cool-season grasses, 44.0% ± 14.0% legumes [predominately alfalfa]) baled silages in swards that were fertilized with dairy slurry. A secondary objective was to examine the effects of bale moisture and inoculation on the aerobic stability of these fermented silages following exposure to air. After the first-cutting was removed, three manure treatments were applied as a whole-plot factor: 1) control (no manure); 2) slurry applied immediately to stubble (63,250 L/ha); or 3) slurry applied after a 1-wk delay (57,484 L/ha). An interactive arrangement of bale moisture (64.1% or 48.4%) and inoculation (yes or no) served as a subplot term in the experiment. The inoculant contained both homolactic (Lactococcus lactis 0224) and heterolactic (Lactobacillus buchneri LB1819) bacteria. The experimental design was analyzed as a randomized complete block with four replications, and the study included 48 experimental units (1.2 × 1.2-m round bales). Total fermentation acids were affected (P ≤ 0.021) by slurry application strategies, but this was likely related to inconsistent bale moisture across slurry-application treatments. Concentrations of butyric acid were low, and there were no detectable contrasts comparing manure treatments (mean = 0.05%; P ≥ 0.645). Bale moisture affected all measures of fermentation, with bales made at 64.1% moisture exhibiting a more acidic final pH (4.39 vs. 4.63; P < 0.001), less residual water-soluble carbohydrates (2.1% vs. 5.1%; P < 0.001), as well as greater lactic acid (4.64% vs. 2.46%; P < 0.001), acetic acid (2.26% vs. 1.32%; P < 0.001), and total fermentation acids (7.37% vs. 3.97%; P < 0.001). Inoculation also reduced pH (4.47 vs. 4.56; P = 0.029), and increased acetic acid (1.97% vs. 1.61%; P < 0.001) and 1,2-propanediol (1.09% vs. 0.72%; P < 0.001) compared to controls. During a 34-d aerobic exposure period, maximum surface bale temperatures were not affected (P ≥ 0.186) by any aspect of treatment, likely due to the prevailing cool ambient temperatures; however, yeast counts were numerically lower in response to greater (P < 0.001) production of acetic acid that was stimulated by both high bale moisture and inoculation.


The objectives of this research were to test an inoculant to mitigate production of clostridial products in high-moisture silage bales, where forages were treated with dairy slurry during the preceding growth cycle. Despite the application of dairy slurry, as well as greater-than-recommended bale moisture, only minimal concentrations of typical clostridial products were observed following fermentation. Inoculation had no effect on final concentrations of either ammonia-N or butyric acid. The lack of clostridial response might be explained by numerous strong rainfall events during the growth of these forages, prompt wrapping following baling, substrate adequacy, as well as an exceptionally low buffering capacity, particularly compared to most mixed, legume-grass swards harvested previously at this location. As a result, using a combination hetero- and homolactic inoculant to mitigate clostridial activity was inconclusive. Both bale moisture and inoculation had positive effects on concentrations of acetic acid following fermentation, and resulted in numerically reduced counts of yeasts following a 34-d exposure to air: however, surface bale temperatures remained cool, regardless of treatment, largely in response to the cool ambient temperatures that occurred in central Wisconsin during November.


Subject(s)
Poaceae , Silage , Animals , Silage/analysis , Fermentation , Manure , Nutritive Value , Medicago sativa , Vegetables , Acetic Acid , Fertilization , Zea mays/microbiology , Aerobiosis
2.
J Environ Qual ; 50(4): 836-846, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33861473

ABSTRACT

Manure and fertilizer applications contribute to greenhouse gas (GHG) and ammonia (NH3 ) emissions. Losses of NH3 and nitrous oxide (N2 O) are an economic loss of nitrogen (N) to farms, and methane (CH4 ), N2 O, and carbon dioxide (CO2 ) are important GHGs. Few studies have examined the effects of low-disturbance manure incorporation (LDMI) on both NH3 and GHG fluxes. Here, NH3 , N2 O, CH4 , and CO2 fluxes in corn (Zea mays L.)-winter rye (Secale cereale L.) field plots were measured under fall LDMI (aerator/band, coulter injection, strip-till, sweep inject, surface/broadcast application, broadcast-disk) and spring-applied urea (134 kg N ha-1 ) treatments from 2013 to 2015 in central Wisconsin. Whereas broadcast lost 35.5% of applied ammonium-N (NH4 -N) as NH3 -N, strip-till inject and coulter inject lost 0.11 and 4.5% of applied NH4 -N as NH3 , respectively. Mean N2 O loss ranged from 2.7 to 3.6% of applied total N for LDMI, compared with 4.2% for urea and 2.6% for broadcast. Overall, greater CO2 fluxes for manure treatments contributed to larger cumulative GHG fluxes compared with fertilizer N. There were few significant treatment effects for CH4 (P > .10); however, fluxes were significantly correlated with changes in soil moisture and temperature. Results indicate that LDMI treatments significantly decreased NH3 loss but led to modest increases in N2 O and CO2 fluxes compared with broadcast and broadcast-disk manure incorporation. Tradeoffs between N conservation versus increased GHG fluxes for LDMI and other methods should be incorporated into nutrient management tools as part of assessing agri-environmental farm impacts.


Subject(s)
Greenhouse Gases , Manure , Ammonia/analysis , Carbon Dioxide/analysis , Methane/analysis , Nitrous Oxide/analysis , Secale , Silage , Soil , Wisconsin , Zea mays
3.
J Environ Qual ; 49(3): 663-674, 2020 May.
Article in English | MEDLINE | ID: mdl-33016402

ABSTRACT

The impacts of low-disturbance manure application (LDMA) on runoff water quality in hay crop forages are not well known. Our objective in this study was to determine surface runoff losses of total nitrogen (TN), ammonium N (NH4 -N), nitrate N (NO3 -N), total phosphorus (TP), dissolved reactive P (DRP), and suspended sediment from alfalfa (Medicago sativa L.)-grass plots in central Wisconsin after surface broadcasting manure and LDMA compared with no application. Treatments were (a) surface banding (BAND), (b) surface banding with aeration (A/B), (c) shallow disk injection (INJECT), (d) surface broadcast (BCAST), and (e) a no-manure control (CONT). Runoff events were generated (n = 7) from replicated plots following a standardized rainfall simulation protocol. Although runoff was variable across plots and within treatments, mean runoff concentrations of TN (P = .03), NH4 -N (P = .03), TP (P = .001), and DRP (P < .0001) were lower for incorporated (INJECT and A/B) vs. unincorporated (BCAST and BAND) treatments. INJECT had lower mean DRP concentration (P = .02) than A/B and was similar to CONT and had lower cumulative TN (P = .05), TP (P = .07), and DRP (P = .01) loads than A/B. Additionally, TP, TN, DRP, and NH4 -N loads and concentrations were strongly related with soil surface manure coverage extent (R2 = 0.50-0.84; P < .0001), suggesting that manure was a main source of N and P losses. Although INJECT appeared to be the most effective in mitigating nutrient loss in surface runoff, more research is needed to determine LDMA impacts on farm economics, soil properties, and runoff water quality.


Subject(s)
Manure , Water Quality , Agriculture , Medicago sativa , Rain , Water Movements , Wisconsin
4.
J Environ Qual ; 49(5): 1298-1309, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33016457

ABSTRACT

Tillage incorporation of manure can mitigate nutrient loss but increases erosion potential and damages cover crops. More information on the effects of low-disturbance manure application (LDMA) on corn yield, cover crop establishment, and soil properties is needed to better predict manure management practice trade-offs. Here, corn silage (Zea mays L.) yield, winter rye (Secale cereale L.) establishment, and soil nitrate concentrations were compared for a range of manure application methods, including broadcast incorporation, broadcast/disk, fertilizer N (spring applied at 67, 134, and 202 kg N ha-1 ), and a no-manure control, at the University of Wisconsin's Marshfield Agricultural Research Station from 2012 to 2015. Compared with the control, manure and fertilizer N treatments increased corn yield by an average of 1.1- to 1.6-fold and 1.4- to 1.6-fold, respectively. Of the LDMA treatments (sweep-, strip till-, and coulter-injection; aerator/band; broadcast), corn yield was greatest for sweep injection, which did not differ from the high N fertilizer rate (P < .0001). Corn yield averaged across LDMA treatments did not differ from the 134 or 202 kg N ha-1 yields. Compared with disking, LDMA maintained more crop residue (P < .0001), with levels comparable to the control. Soil nitrate-N at depths of 0-30 and 30-60 cm was influenced by LDMA and fertilizer N; however, leaching to 60-90 cm was comparable among treatments. Results indicate that LDMA with injection conserved more N, caused less damage to winter rye, and had similar yields to fertilizer N treatments with improved soil aggregate stability and higher total carbon content.


Subject(s)
Silage , Zea mays , Manure , Secale , Soil
5.
J Environ Qual ; 45(5): 1672-1679, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27695757

ABSTRACT

Manure applied to cropland is a source of phosphorus (P) and nitrogen (N) in surface runoff and can contribute to impairment of surface waters. Tillage immediately after application incorporates manure into the soil, which may reduce nutrient loss in runoff as well as N loss via NH volatilization. However, tillage also incorporates crop residue, which reduces surface cover and may increase erosion potential. We applied liquid dairy manure in a silage corn ( L.)-cereal rye ( L.) cover crop system in late October using methods designed to incorporate manure with minimal soil and residue disturbance. These include strip-till injection and tine aerator-band manure application, which were compared with standard broadcast application, either incorporated with a disk or left on the surface. Runoff was generated with a portable rainfall simulator (42 mm h for 30 min) three separate times: (i) 2 to 5 d after the October manure application, (ii) in early spring, and (iii) after tillage and planting. In the postmanure application runoff, the highest losses of total P and dissolved reactive P were from surface-applied manure. Dissolved P loss was reduced 98% by strip-till injection; this result was not statistically different from the no-manure control. Reductions from the aerator band method and disk incorporation were 53 and 80%, respectively. Total P losses followed a similar pattern, with 87% reduction from injected manure. Runoff losses of N had generally similar patterns to those of P. Losses of P and N were, in most cases, lower in the spring rain simulations with fewer significant treatment effects. Overall, results show that low-disturbance manure application methods can significantly reduce nutrient runoff losses compared with surface application while maintaining residue cover better than incorporation by tillage.


Subject(s)
Manure , Nitrogen/analysis , Phosphorus/analysis , Water Movements , Agriculture , Animals , Cattle , Rain , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...