Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Brain ; 143(9): 2721-2732, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32889550

ABSTRACT

Neuromyelitis optica, a rare neuroinflammatory demyelinating disease of the CNS, is characterized by the presence of specific pathogenic autoantibodies directed against the astrocytic water channel aquaporin 4 (AQP4) and is now considered as an astrocytopathy associated either with complement-dependent astrocyte death or with astrocyte dysfunction. However, the link between astrocyte dysfunction and demyelination remains unclear. We propose glial intercellular communication, supported by connexin hemichannels and gap junctions, to be involved in demyelination process in neuromyelitis optica. Using mature myelinated cultures, we demonstrate that a treatment of 1 h to 48 h with immunoglobulins purified from patients with neuromyelitis optica (NMO-IgG) is responsible for a complement independent demyelination, compared to healthy donors' immunoglobulins (P < 0.001). In parallel, patients' immunoglobulins induce an alteration of connexin expression characterized by a rapid loss of astrocytic connexins at the membrane followed by an increased size of gap junction plaques (+60%; P < 0.01). This was co-observed with connexin dysfunction with gap junction disruption (-57%; P < 0.001) and increased hemichannel opening (+17%; P < 0.001), associated with glutamate release. Blocking connexin 43 hemichannels with a specific peptide was able to prevent demyelination in co-treatment with patients compared to healthy donors' immunoglobulins. By contrast, the blockade of connexin 43 gap junctions with another peptide was detrimental for myelin (myelin density -48%; P < 0.001). Overall, our results suggest that dysregulation of connexins would play a pathogenetic role in neuromyelitis optica. The further identification of mechanisms leading to connexin dysfunction and soluble factors implicated, would provide interesting therapeutic strategies for demyelinating disorders.


Subject(s)
Astrocytes/metabolism , Autoantibodies/metabolism , Connexins/metabolism , Demyelinating Diseases/metabolism , Neuromyelitis Optica/metabolism , Animals , Aquaporin 4/metabolism , Astrocytes/pathology , Coculture Techniques , Demyelinating Diseases/pathology , Humans , Immunoglobulin G/metabolism , Neuromyelitis Optica/pathology , Rats
2.
PLoS One ; 15(9): e0238301, 2020.
Article in English | MEDLINE | ID: mdl-32881954

ABSTRACT

BACKGROUND: Neuromyelitis optica spectrum disorders (NMOSD) is a primary astrocytopathy driven by antibodies directed against the aquaporin-4 water channel located at the end-feet of the astrocyte. Although blood-brain barrier (BBB) breakdown is considered one of the key steps for the development and lesion formation, little is known about the molecular mechanisms involved. The aim of the study was to evaluate the effect of human immunoglobulins from NMOSD patients (NMO-IgG) on BBB properties. METHODS: Freshly isolated brain microvessels (IBMs) from rat brains were used as a study model. At first, analysis of the secretome profile from IBMs exposed to purified NMO-IgG, to healthy donor IgG (Control-IgG), or non-treated, was performed. Second, tight junction (TJ) proteins expression in fresh IBMs and primary cultures of brain microvascular endothelial cells (BMEC) was analysed by Western blotting (Wb) after exposition to NMO-IgG and Control-IgG. Finally, functional BBB properties were investigated evaluating the presence of rat-IgG in tissue lysate from brain using Wb in the rat-model, and the passage of NMO-IgG and sucrose in a bicameral model. RESULTS: We found that NMO-IgG induces functional and morphological BBB changes, including: 1) increase of pro-inflammatory cytokines production (CXCL-10 [IP-10], IL-6, IL-1RA, IL-1ß and CXCL-3) in IBMs when exposed to NMO-IgG; 2) decrease of Claudin-5 levels by 25.6% after treatment of fresh IBMs by NMO-IgG compared to Control-IgG (p = 0.002), and similarly, decrease of Claudin-5 by at least 20% when BMEC were cultured with NMO-IgG from five different patients; 3) a higher level of rat-IgG accumulated in periventricular regions of NMO-rats compared to Control-rats and an increase in the permeability of BBB after NMO-IgG treatment in the bicameral model. CONCLUSION: Human NMO-IgG induces both structural and functional alterations of BBB properties, suggesting a direct role of NMO-IgG on modulation of BBB permeability in NMOSD.


Subject(s)
Aquaporin 4/immunology , Blood-Brain Barrier/metabolism , Immunoglobulin G/pharmacology , Neuromyelitis Optica/pathology , Permeability/drug effects , Animals , Blood-Brain Barrier/drug effects , Cells, Cultured , Chemokines/metabolism , Claudin-5/metabolism , Cytokines/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Immunoglobulin G/isolation & purification , Microvessels/cytology , Microvessels/metabolism , Neuromyelitis Optica/metabolism , Rats
3.
Cell Mol Life Sci ; 75(1): 67-79, 2018 01.
Article in English | MEDLINE | ID: mdl-28864883

ABSTRACT

Transcriptional regulation of proteins involved in neuronal polarity is a key process that underlies the ability of neurons to transfer information in the central nervous system. The Collapsin Response Mediator Protein (CRMP) family is best known for its role in neurite outgrowth regulation conducting to neuronal polarity and axonal guidance, including CRMP5 that drives dendrite differentiation. Although CRMP5 is able to control dendritic development, the regulation of its expression remains poorly understood. Here we identify a Sox5 consensus binding sequence in the putative promoter sequence upstream of the CRMP5 gene. By luciferase assays we show that Sox5 increases CRMP5 promoter activity, but not if the putative Sox5 binding site is mutated. We demonstrate that Sox5 can physically bind to the CRMP5 promoter DNA in gel mobility shift and chromatin immunoprecipitation assays. Using a combination of real-time RT-PCR and quantitative immunocytochemistry, we provide further evidence for a Sox5-dependent upregulation of CRMP5 transcription and protein expression in N1E115 cells: a commonly used cell line model for neuronal differentiation. Furthermore, we report that increasing Sox5 levels in this neuronal cell line inhibits neurite outgrowth. This inhibition requires CRMP5 because CRMP5 knockdown prevents the Sox5-dependent effect. We confirm the physiological relevance of the Sox5-CRMP5 pathway in the regulation of neurite outgrowth using mouse primary hippocampal neurons. These findings identify Sox5 as a critical modulator of neurite outgrowth through the selective activation of CRMP5 expression.


Subject(s)
Amidohydrolases/genetics , Gene Expression Regulation , Neuronal Outgrowth/genetics , SOXD Transcription Factors/genetics , Amidohydrolases/metabolism , Animals , Binding Sites/genetics , Brain/embryology , Brain/metabolism , Cell Line, Tumor , Humans , Hydrolases , Mice , Microtubule-Associated Proteins , Mutation , Neurites/metabolism , Neurons/cytology , Neurons/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , SOXD Transcription Factors/metabolism
4.
Glia ; 62(10): 1645-58, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24910450

ABSTRACT

Our knowledge of multiple sclerosis (MS) neuropathology has benefited from a number of studies that provided an in-depth description of plaques and, more recently, diffuse alterations of the normal-appearing white or grey matter. However, there have been few studies focusing on the periplaque regions surrounding demyelinated plaques, notably in MS spinal cords. In this context, the present study aimed to analyze the molecular immunopathology of periplaque demyelinated lesions (PDLs) in the spinal cord of patients with a progressive form of MS. To achieve this goal, the neuropathological features of PDLs were analyzed in postmortem tissues derived from the cervical spinal cord of 21 patients with primary or secondary progressive MS. We found that PDLs covered unexpectedly large areas of incomplete demyelination and were characterized by the superimposition of pro- and anti-inflammatory molecular signatures. Accordingly, macrophages/microglia accumulated in PDLs but exhibited a poor phagocytic activity toward myelin debris. Interestingly, while genes of the oligodendrocyte lineage were consistently down-regulated in PDLs, astrocyte-related molecules such as aquaporin 4, connexin 43 and the glutamate transporter EAAT1, were significantly upregulated in PDLs at the mRNA and protein levels. Overall, our work indicates that in the spinal cord of patients with a progressive form of MS, a tissue remodeling process that is temporally remote from plaque development takes place in PDLs. We propose that in spinal cord PDLs, this process is supported by subtle alterations of astrocyte functions and by low-grade inflammatory events that drive a slowly progressive loss of myelin and a failure of remyelination.


Subject(s)
Multiple Sclerosis, Chronic Progressive/immunology , Multiple Sclerosis, Chronic Progressive/pathology , Spinal Cord/immunology , Spinal Cord/pathology , Adult , Aquaporin 4/metabolism , Cervical Vertebrae , Connexin 43/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Female , Humans , Macrophages/immunology , Macrophages/pathology , Male , Microglia/immunology , Microglia/pathology , Middle Aged , Myelin Sheath/immunology , Myelin Sheath/pathology , Oligodendroglia/immunology , Oligodendroglia/pathology , Phagocytosis
5.
Cell Adh Migr ; 7(1): 38-43, 2013.
Article in English | MEDLINE | ID: mdl-23076208

ABSTRACT

Lymphocyte migration into the central nervous system is a critical step in the physiopathology of a variety of neurological diseases, including multiple sclerosis and virus-induced neuroinflammation. To better understand the molecular mechanisms involved in cells migration, we focused our studies on collapsin response mediator proteins (CRMPs), a group of phosphoproteins that mediate neural cell motility. There is now evidence that collapsin response mediator protein 2 (CRMP2) plays critical roles in the polarization (uropod formation) of T lymphocytes and their subsequent migration. CRMP2 was known to respond to semaphorin, ephrin and neurotrophin signaling in neurons. The link between the chemokine CXCL12, CRMP2 activity and cell migration has been demonstrated in T lymphocytes. These observations and comparisons of the activity of CRMPs in immune and non-immmune cells are summarized here. The ability of a human retrovirus to enhance lymphocyte migration through the modulation of CRMP2 activity is also discussed. In conclusion, viruses have the ability to manipulate the lymphocyte motility machinery, intensifying neural tissue invasion in infected patients.

6.
J Immunol ; 188(3): 1222-33, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22227566

ABSTRACT

Recruitment of virus-infected T lymphocytes into the CNS is an essential step in the development of virus-associated neuroinflammatory diseases, notably myelopathy induced by retrovirus human T leukemia virus-1 (HTLV-1). We have recently shown the key role of collapsin response mediator protein 2 (CRMP2), a phosphoprotein involved in cytoskeleton rearrangement, in the control of human lymphocyte migration and in brain targeting in animal models of virus-induced neuroinflammation. Using lymphocytes cloned from infected patients and chronically infected T cells, we found that HTLV-1 affects CRMP2 activity, resulting in an increased migratory potential. Elevated CRMP2 expression accompanies a higher phosphorylation level of CRMP2 and its more pronounced adhesion to tubulin and actin. CRMP2 forms, a full length and a shorter, cleaved one, are also affected. Tax transfection and extinction strategies show the involvement of this viral protein in enhanced full-length and active CRMP2, resulting in prominent migratory rate. A role for other viral proteins in CRMP2 phosphorylation is suspected. Full-length CRMP2 confers a migratory advantage possibly by preempting the negative effect of short CRMP2 we observe on T lymphocyte migration. In addition, HTLV-1-induced migration seems, in part, supported by the ability of infected cell to increase the proteosomal degradation of short CRMP2. Finally, gene expression in CD69(+) cells selected from patients suggests that HTLV-1 has the capacity to influence the CRMP2/PI3K/Akt axis thus to positively control cytoskeleton organization and lymphocyte migration. Our data provide an additional clue to understanding the infiltration of HTLV-1-infected lymphocytes into various tissues and suggest that the regulation of CRMP2 activity by virus infection is a novel aspect of neuroinflammation.


Subject(s)
Cell Movement , Human T-lymphotropic virus 1/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , T-Lymphocytes/virology , Antigens, CD , Antigens, Differentiation, T-Lymphocyte , Cytoskeleton/virology , Humans , Inflammation/virology , Intercellular Signaling Peptides and Proteins/physiology , Lectins, C-Type , Nerve Tissue Proteins/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , T-Lymphocytes/physiology , Viral Proteins
7.
Brain ; 133(9): 2578-91, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20688809

ABSTRACT

Devic's neuromyelitis optica is an inflammatory demyelinating disorder normally restricted to the optic nerves and spinal cord. Since the identification of a specific autoantibody directed against aquaporin 4, neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody, neuromyelitis optica has been considered an entity distinct from multiple sclerosis. Recent findings indicate that the neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody has a pathogenic role through complement-dependent astrocyte toxicity. However, the link with demyelination remains elusive. Autoantibodies can act as receptor agonists/antagonists or alter antigen density in their target cells. We hypothesized that the neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody impairs astrocytic function and secondarily leads to demyelination. Rat astrocytes and oligodendrocytes from primary cultures and rat optic nerves were exposed long-term (24 h) to immunoglobulin G in the absence of complement. Immunoglobulin G was purified from the serum of patients with neuromyelitis optica who were either neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody positive or negative, as well as from healthy controls. Flow cytometry analysis showed a reduction of membrane aquaporin 4 and glutamate transporter type 1 on astrocytes following contact with immunoglobulin G purified from neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody positive serum only. The activity of glutamine synthetase, an astrocyte enzyme converting glutamate into glutamine, decreased in parallel, indicating astrocyte dysfunction. Treatment also reduced oligodendrocytic cell processes and approximately 30% oligodendrocytes died. This deleterious effect was confirmed ex vivo; exposed optic nerves showed reduction of myelin basic protein. Immunoglobulin G from neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody seronegative patients and from healthy controls had no similar effect. Neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody did not directly injure oligodendrocytes cultured without astrocytes. A toxic bystander effect of astrocytes damaged by neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody on oligodendrocytes was identified. Progressive accumulation of glutamate in the culture medium of neuromyelitis optica-immunoglobulin G/aquaporin 4-antibody-treated glial cells supported the hypothesis of a glutamate-mediated excitotoxic death of oligodendrocytes in our models. Moreover, co-treatment of glial cultures with neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody and d+2-amino-5-phosphonopentanoic acid, a competitive antagonist at the N-methyl-d-aspartate/glutamate receptor, partially protected oligodendrocytes. Co-immunolabelling of oligodendrocyte markers and neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody showed that astrocytic positive processes were in close contact with oligodendrocytes and myelin in rat optic nerves and spinal cord, but far less so in other parts of the central nervous system. This suggests a bystander effect of neuromyelitis optica-immunoglobulin G-damaged astrocytes on oligodendrocytes in the nervous tissues affected by neuromyelitis optica. In conclusion, in these cell culture models we found a direct, complement-independent effect of neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody on astrocytes, with secondary damage to oligodendrocytes possibly resulting from glutamate-mediated excitotoxicity. These mechanisms could add to the complement-induced damage, particularly the demyelination, seen in vivo.


Subject(s)
Astrocytes/physiology , Immunoglobulin G/adverse effects , Neuromyelitis Optica/immunology , Neuromyelitis Optica/pathology , Oligodendroglia/drug effects , 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism , Adolescent , Adult , Animals , Animals, Newborn , Aquaporin 4/immunology , Astrocytes/drug effects , Astrocytes/metabolism , Caspase 3/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Female , Flow Cytometry/methods , Glial Fibrillary Acidic Protein/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutamic Acid/metabolism , Humans , Hydrolases , Immunoglobulin G/blood , Male , Microtubule-Associated Proteins , Middle Aged , Myelin Basic Protein/metabolism , Nerve Tissue Proteins/metabolism , Neuromyelitis Optica/blood , Oligodendroglia/metabolism , Optic Nerve/drug effects , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Statistics, Nonparametric , Time Factors , Transfection/methods , Young Adult
8.
J Biol Chem ; 284(19): 13265-76, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19276087

ABSTRACT

In the central nervous system, collapsin response mediator protein 2 (CRMP2) is a transducer protein that supports the semaphorin-induced guidance of axons toward their cognate target. However, we previously showed that CRMP2 is also expressed in immune cells and plays a crucial role in T lymphocyte migration. Here we further investigated the molecular mechanisms underlying CRMP2 function in chemokine-directed T-cell motility. Examining Jurkat T-cells treated with the chemokine CXCL12, we found that 1) CXCL12 induces a dynamic re-localization of CRMP2 to uropod, the flexible structure of migrating lymphocyte, and increases its binding to the cytoskeletal protein vimentin; 2) CXCL12 decreases phosphorylation of the glycogen synthase kinase-3beta-targeted residues CRMP2-Thr-509/514; and 3) tyrosine Tyr-479 is a new phosphorylation CRMP2 residue and a target for the Src-family kinase Yes. Moreover, phospho-Tyr-479 increased under CXCL12 signaling while phospho-Thr-509/514 decreased. The functional importance of this tyrosine phosphorylation was demonstrated by Y479F mutation that strongly reduced CXCL12-mediated T-cell polarization and motility as tested in a transmigration model and on neural tissue. We propose that differential phosphorylation by glycogen synthase kinase-3beta and Yes modulates the contribution of CRMP2 to cytoskeletal reorganization during chemokine-directed T-cell migration. In addition to providing a novel mechanism for T lymphocyte motility, our findings reveal CRMP2 as a transducer of chemokine signaling.


Subject(s)
Cell Movement , Chemokine CXCL12/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , T-Lymphocytes/cytology , Tyrosine/metabolism , Amino Acid Sequence , Animals , Animals, Newborn , Blotting, Western , Cell Adhesion , Chemokine CXCL12/genetics , Chemokines/metabolism , Cyclin-Dependent Kinase 5 , Cytoskeleton/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Jurkat Cells , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Phosphorylation , Protein Conformation , Proto-Oncogene Proteins c-yes/metabolism , Sequence Homology, Amino Acid , Signal Transduction , T-Lymphocytes/metabolism , src-Family Kinases/metabolism
9.
J Immunol ; 175(11): 7650-60, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16301675

ABSTRACT

The semaphorin-signaling transducer collapsin response mediator protein 2 (CRMP2) has been identified in the nervous system where it mediates Sema3A-induced growth cone navigation. In the present study, we provide first evidence that CRMP2 is present in the immune system and plays a critical role in T lymphocyte function. CRMP2 redistribution at the uropod in polarized T cells, a structural support of lymphocyte motility, suggests that it may regulate T cell migration. This was evidenced in primary T cells by small-interfering RNA-mediated CRMP2 gene silencing and blocking Ab, as well as CRMP2 overexpression in Jurkat T cells tested in a chemokine- and semaphorin-mediated transmigration assay. Expression analysis in PBMC from healthy donors showed that CRMP2 is enhanced in cell subsets bearing the activation markers CD69+ and HLA-DR+. Heightened expression in T lymphocytes of patients suffering from neuroinflammatory disease with enhanced T cell-transmigrating activity points to a role for CRMP2 in pathogenesis. The elucidation of the signals and mechanisms that control this pathway will lead to a better understanding of T cell trafficking in physiological and pathological situations.


Subject(s)
Cell Movement/immunology , Proteins/immunology , T-Lymphocytes/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Blotting, Western , Flow Cytometry , Gene Silencing , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , HTLV-I Infections/immunology , Humans , Intercellular Signaling Peptides and Proteins , Jurkat Cells , Lectins, C-Type , Nerve Tissue Proteins , Proteins/metabolism , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Transfection
10.
Int Arch Allergy Immunol ; 130(1): 17-24, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12576731

ABSTRACT

BACKGROUND: Although fish gelatin may represent a useful alternative to bovine or porcine gelatin, the clearly recognized high prevalence of fish allergy could increase the risk of anaphylaxis to gelatin. The rationale for investigating tuna gelatin rather than gelatin from more allergenic fishes is the availability of an industrial gelatin under development. The infrequent occurrence of tuna allergy should influence the safety of a derived product. The present study investigated IgE antibodies to tuna-skin-derived gelatin in adults and children with documented fish allergy or sensitization. METHODS: Serum samples were taken from 100 consecutive patients with fish allergy or sensitization and tested for IgE antibodies against hydrolyzed or nonhydrolyzed gelatin extracted from tuna skin as compared to extracts from tuna flesh, tuna skin as well as bovine or porcine gelatin. Patients with tuna allergies or sensitization were sensitive to the same tuna species (yellowfin) as that from which the gelatin was obtained. IgE antibodies to these various extracts were analyzed using SDS-PAGE and immunoblotting. RESULTS: Only 3 of the 100 serum samples tested gave evidence of reactivity to gelatin extracted from tuna skin. Cross-reactivity between bovine/porcine and fish gelatin was not observed. CONCLUSION: The risk of adverse reactions to tuna skin gelatin seems to be significantly lower than the risk of fish allergy. Fish gelatin may represent a valuable alternative to bovine or porcine gelatin.


Subject(s)
Food Hypersensitivity/etiology , Gelatin/immunology , Tuna/immunology , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Gelatin/isolation & purification , Humans , Immunoblotting , Immunoglobulin E/immunology , Infant , Male , Middle Aged , Molecular Weight , Risk Factors , Skin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...