Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 413(20): 5201-5213, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34228133

ABSTRACT

A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was established for simultaneous quantification of eight pharmaceutical molecules (2-hydroxyibuprofen, diclofenac, ibuprofen, propranolol, ofloxacin, oxazepam, sulfamethoxazole, carbamazepine) and caffeine in environmental matrices. Analysis was performed by ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS-MS). Quantification was performed by using the 13C internal standard method for each molecule. Two methods were firstly optimized on freeze-dried waste activated sludge and then applied and validated on real complex matrices, which have contrasted physicochemical properties, i.e., clarified wastewater and primary sludge. The combination of acetate buffer with MgSO4 (protocol A) and citrate buffer with Na2SO4 (protocol B) was found necessary to recover the nine targeted compounds. Adding a higher salts quantity of Na2SO4 (protocol B) compared to MgSO4 (protocol A) is crucial to increase the ionic strength of the aqueous solution and to obtain comparable extraction recoveries of the targeted molecules. Adding two times solvent volume to the aqueous phase leads to increased absolute recovery for all molecules and both protocols. After demonstration of the final protocol's performance on the control matrix, its robustness was tested on the matrices of interest. As a result, the two proposed detection methods exhibit good reproducibility, high sensitivity, and high reliability.

2.
Water Res ; 182: 116033, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32721702

ABSTRACT

The removal efficiency of nine pharmaceutical compounds from primary sludge was evaluated in two different operating conditions: (i) in conventional Mesophilic Anaerobic Digestion (MAD) alone and (ii) in a co-treatment process combining Mesophilic Anaerobic Digestion and a Thermophilic Aerobic Reactor (MAD-TAR). The pilot scale reactors were fed with primary sludge obtained after decantation of urban wastewater. Concerning the biodegradation of organic matter, thermophilic aeration increased solubilization and hydrolysis yields of digestion, resulting in a further 26% supplementary removal of chemical oxygen demand (COD) in MAD-TAR process compared to the conventional mesophilic anaerobic digestion. The highest removal rate of target micropollutants were observed for caffeine (CAF) and sulfamethoxazole (SMX) (>89%) with no substantial differences between both processes. Furthermore, MAD-TAR process showed a significant increase of removal efficiency for oxazepam (OXA) (73%), propranolol (PRO) (61%) and ofloxacine (OFL) (41%) and a slight increase for diclofenac (DIC) (4%) and 2 hydroxy-ibuprofen (2OH-IBP) (5%). However, ibuprofen (IBP) and carbamazepine (CBZ) were not degraded during both processes. Anaerobic digestion affected the liquid-solid partition of most target compounds. Sorbed fraction of pharmaceutical compounds on the sludge tend to decrease after digestion, this tendency being more pronounced in the case of the MAD-TAR process due to much lower concentration of solids.


Subject(s)
Pharmaceutical Preparations , Waste Disposal, Fluid , Anaerobiosis , Biological Oxygen Demand Analysis , Bioreactors , Sewage/analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...