Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2021: 6692110, 2021.
Article in English | MEDLINE | ID: mdl-33763174

ABSTRACT

Asthma is a chronic inflammatory disease of the airways related to epithelial damage, bronchial hyperresponsiveness to contractile agents, tissue remodeling, and luminal narrowing. Currently, there are many data about the pathophysiology of asthma; however, a new aspect has emerged related to the influence of reactive oxygen and nitrogen species (ROS and RNS) on the origin of this disease. Several studies have shown that an imbalance between the production of ROS and RNS and the antioxidant enzymatic and nonenzymatic systems plays an important role in the pathogenesis of this disease. Considering this aspect, this study is aimed at gathering data from the scientific literature on the role of oxidative distress in the development of inflammatory airway and lung diseases, especially bronchial asthma. For that, articles related to these themes were selected from scientific databases, including human and animal studies. The main findings of this work showed that the respiratory system works as a highly propitious place for the formation of ROS and RNS, especially superoxide anion, hydrogen peroxide, and peroxynitrite, and the epithelial damage is reflected in an important loss of antioxidant defenses that, in turn, culminates in an imbalance and formation of inflammatory and contractile mediators, such as isoprostanes, changes in the activity of protein kinases, and activation of cell proliferation signalling pathways, such as the MAP kinase pathway. Thus, the oxidative imbalance appears as a promising path for future investigations as a therapeutic target for the treatment of asthmatic patients, especially those resistant to currently available therapies.


Subject(s)
Asthma/pathology , Disease Progression , Animals , Antioxidants/metabolism , Humans , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism
2.
Oxid Med Cell Longev ; 2020: 5148503, 2020.
Article in English | MEDLINE | ID: mdl-32089769

ABSTRACT

Asthma is a chronic inflammatory disease of the airways characterized by immune cell infiltrates, bronchial hyperresponsiveness, and declining lung function. Thus, the possible effects of virgin coconut oil on a chronic allergic lung inflammation model were evaluated. Morphology of lung and airway tissue exhibited peribronchial inflammatory infiltrate, epithelial hyperplasia, and smooth muscle thickening in guinea pigs submitted to ovalbumin sensitization, which were prevented by virgin coconut oil supplementation. Additionally, in animals with lung inflammation, trachea contracted in response to ovalbumin administration, showed a greater contractile response to carbachol (CCh) and histamine, and these responses were prevented by the virgin coconut oil supplementation. Apocynin, a NADPH oxidase inhibitor, did not reduce the potency of CCh, whereas tempol, a superoxide dismutase mimetic, reduced potency only in nonsensitized animals. Catalase reduced the CCh potency in nonsensitized animals and animals sensitized and treated with coconut oil, indicating the participation of superoxide anion and hydrogen peroxide in the hypercontractility, which was prevented by virgin coconut oil. In the presence of L-NAME, a nitric oxide synthase (NOS) inhibitor, the CCh curve remained unchanged in nonsensitized animals but had increased efficacy and potency in sensitized animals, indicating an inhibition of endothelial NOS but ineffective in inhibiting inducible NOS. In animals sensitized and treated with coconut oil, the CCh curve was not altered, indicating a reduction in the release of NO by inducible NOS. These data were confirmed by peribronchiolar expression analysis of iNOS. The antioxidant capacity was reduced in the lungs of animals with chronic allergic lung inflammation, which was reversed by the coconut oil, and confirmed by analysis of peribronchiolar 8-iso-PGF2α content. Therefore, the virgin coconut oil supplementation reverses peribronchial inflammatory infiltrate, epithelial hyperplasia, smooth muscle thickening, and hypercontractility through oxidative stress and its interactions with the NO pathway.


Subject(s)
Antioxidants/therapeutic use , Bronchial Hyperreactivity/therapy , Coconut Oil/therapeutic use , Pneumonia/therapy , Animals , Antioxidants/pharmacology , Chronic Disease , Coconut Oil/pharmacology , Female , Guinea Pigs , Male
3.
Oxid Med Cell Longev ; 2018: 6364821, 2018.
Article in English | MEDLINE | ID: mdl-30498560

ABSTRACT

Few studies have associated the effects of changes in caloric intake and redox disturbances in the gastrointestinal tract. Therefore, the present study aimed at evaluating the hypercaloric diet consumption influence on the contractile reactivity of intestinal smooth muscle, morphology, and oxidative stress of rat ileum. Wistar rats were randomly divided into groups that received a standard diet and fed with a hypercaloric diet for 8 weeks. Animals were euthanized, and the ileum was isolated to isotonic contraction monitoring. Morphology was evaluated by histological staining and oxidative stress by quantification of malondialdehyde levels and total antioxidant activity. Cumulative concentration-response curves to KCl and carbachol were attenuated in rats fed with a hypercaloric diet compared to those that received a standard diet. In addition, an increase in caloric intake promotes a rise in the thickness of the longitudinal smooth muscle layer of rat ileum and tissue malondialdehyde levels, characterizing lipid peroxidation, as well as a decrease in the antioxidant activity. Thus, it was concluded that the consumption of a hypercaloric diet impairs rat intestinal contractility due to mechanisms involving modifications in the intestinal smooth muscle architecture triggered by redox disturbances.


Subject(s)
Diet/adverse effects , Muscle Contraction/physiology , Animals , Antioxidants/metabolism , Energy Intake/physiology , Lipid Peroxidation/physiology , Malondialdehyde/metabolism , Oxidation-Reduction , Rats , Rats, Wistar , Thiobarbiturates/metabolism
4.
Eur J Pharmacol ; 767: 52-60, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26452514

ABSTRACT

Flavonoid galetin 3,6-dimethyl ether (FGAL) has been isolated from the aerial parts of Piptadenia stipulaceae and has shown a spasmolytic effect in guinea pig ileum. Thus, we aimed to characterize its relaxant mechanism of action. FGAL exhibited a higher relaxant effect on ileum pre-contracted by histamine (EC50=1.9±0.4×10(-7) M) than by KCl (EC50=2.6±0.5×10(-6) M) or carbachol (EC50=1.8±0.4×10(-6) M). The flavonoid inhibited the cumulative contractions to histamine, as well as to CaCl2 in depolarizing medium nominally Ca(2+)-free. The flavonoid relaxed the ileum pre-contracted by S-(-)-Bay K8644 (EC50=9.5±1.9×10(-6) M) but less potently pre-contracted by KCl or histamine. CsCl attenuated the relaxant effect of FGAL (EC50=1.1±0.3×10(-6) M), but apamin or tetraethylammonium (1mM) had no effect (EC50=2.6±0.2×10(-7) and 1.6±0.3×10(-7) M, respectively), ruling out the involvement of small and big conductance Ca(2+)-activated K(+) channels (SKCa and BKCa, respectively). Either 4-aminopyridine or glibenclamide attenuated the relaxant effect of FGAL (EC50=1.8±0.2×10(-6) and 1.5±0.5×10(-6) M, respectively), indicating the involvement of voltage- and ATP-sensitive K(+) channels (KV and KATP, respectively). FGAL did not alter the viability of intestinal myocytes in the MTT assay and decreased (88%) Fluo-4 fluorescence, indicating a decrease in cytosolic Ca(2+) concentration. Therefore, the relaxant mechanism of FGAL involves pseudo-irreversible noncompetitive antagonism of histaminergic receptors, KV and KATP activation and blockade of CaV1, thus leading to a reduction in cytosolic Ca(2+) levels.


Subject(s)
Calcium/metabolism , Flavonoids/pharmacology , Ileum/drug effects , Muscle Contraction/drug effects , Potassium Channels/agonists , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , 4-Aminopyridine/pharmacology , Animals , Apamin/pharmacology , Calcium Chloride/antagonists & inhibitors , Calcium Chloride/pharmacology , Carbachol/antagonists & inhibitors , Carbachol/pharmacology , Cell Survival/drug effects , Cesium/pharmacology , Chlorides/pharmacology , Flavonoids/antagonists & inhibitors , Glyburide/pharmacology , Guinea Pigs , Histamine/pharmacology , Histamine Antagonists/pharmacology , Ileum/physiology , Muscle Cells/drug effects , Potassium Channel Blockers/pharmacology , Potassium Chloride/antagonists & inhibitors , Potassium Chloride/pharmacology , Tetraethylammonium
5.
Z Naturforsch C J Biosci ; 65(9-10): 627-36, 2010.
Article in English | MEDLINE | ID: mdl-21138067

ABSTRACT

The present study was designed to further evaluate a possible spasmolytic activity of synthetic lapachol derivatives, norlapachol, alpha-norlapachone, beta-norlapachone and hydro-hydroxy-norlapachol (HH-norlapachol), on guinea-pig ileum. In guinea-pig ileum, except for norlapachol, all naphthoquinones inhibited the phasic contractions induced by carbachol or histamine. Even when the ileum was pre-contracted with KCl, carbachol or histamine, all naphthoquinones induced relaxation, suggesting that these naphthoquinones could be acting on the voltage-gated calcium channels (Ca(V)). As the tonic component this contraction is maintained mainly by the opening of the Ca(V), we hypothesized that these naphthoquinones might be acting on these channels. This hypothesis was confirmed by the observation that norlapachol (pD'2 = 4.99), alpha-norlapachone (pD'2 = 4.49), beta-norlapachone (pD'2 = 6.33), and HH-norlapachol (pD'2 = 4.53) antagonized the contractions induced by CaCl2 in depolarizing medium nominally without Ca2+. As beta-norlapachone was the most potent we decided to continue the study of its action mechanism. The fact that this naphthoquinone has inhibited the tonic contractions induced by S-(-)-Bay K8644 [EC50 = (1.6 +/- 0.30) x 10(-5) M] suggests that the Ca2+ channel involved belongs to the type L (Ca(V)1.2). In addition, in the functional level, the spasmolytic effect of beta-norlapachone does not involve participation of free radicals, since its curve of relaxation was unchanged in the presence of glutathione, an antioxidant agent.


Subject(s)
Ileum/physiology , Muscle Relaxation/physiology , Naphthoquinones/pharmacology , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Calcium Channel Agonists/pharmacology , Guinea Pigs , Histamine/pharmacology , Ileum/drug effects , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Relaxation/drug effects , Naphthoquinones/isolation & purification , Potassium Chloride/pharmacology , Tabebuia/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...