Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 9(12): e113378, 2014.
Article in English | MEDLINE | ID: mdl-25478918

ABSTRACT

INTRODUCTION: Mucositis induced by anti-neoplastic drugs is an important, dose-limiting and costly side-effect of cancer therapy. AIM: To evaluate the effect of the topical application of S-nitrosoglutathione (GSNO), a nitric oxide donor, on 5-fluorouracil (5-FU)-induced oral mucositis in hamsters. MATERIALS AND METHODS: Oral mucositis was induced in male hamsters by two intraperitoneal administrations of 5-FU on the first and second days of the experiment (60 and 40 mg/kg, respectively) followed by mechanical trauma on the fourth day. Animals received saline, HPMC or HPMC/GSNO (0.1, 0.5 or 2.0 mM) 1 h prior to the 5-FU injection and twice a day for 10 or 14 days. Samples of cheek pouches were harvested for: histopathological analysis, TNF-α and IL-1ß levels, immunohistochemical staining for iNOS, TNF-α, IL-1ß, Ki67 and TGF-ß RII and a TUNEL assay. The presence and levels of 39 bacterial taxa were analyzed using the Checkerboard DNA-DNA hybridization method. The profiles of NO released from the HPMC/GSNO formulations were characterized using chemiluminescence. RESULTS: The HPMC/GSNO formulations were found to provide sustained release of NO for more than 4 h at concentration-dependent rates of 14 to 80 nmol/mL/h. Treatment with HPMC/GSNO (0.5 mM) significantly reduced mucosal damage, inflammatory alterations and cell death associated with 5-FU-induced oral mucositis on day 14 but not on day 10. HPMC/GSNO administration also reversed the inhibitory effect of 5-FU on cell proliferation on day 14. In addition, we observed that the chemotherapy significantly increased the levels and/or prevalence of several bacterial species. CONCLUSION: Topical HPMC/GSNO accelerates mucosal recovery, reduces inflammatory parameters, speeds up re-epithelization and decreases levels of periodontopathic species in mucosal ulcers.


Subject(s)
Inflammation/drug therapy , Neoplasms/drug therapy , S-Nitrosoglutathione/administration & dosage , Stomatitis/drug therapy , Administration, Topical , Animals , Cricetinae , Disease Models, Animal , Fluorouracil/adverse effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inflammation/genetics , Inflammation/pathology , Interleukin-1beta/biosynthesis , Male , Neoplasms/pathology , Nitric Oxide Synthase Type II/biosynthesis , Stomatitis/chemically induced , Stomatitis/genetics , Stomatitis/pathology , Transforming Growth Factor beta/biosynthesis , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL