Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 25(28): 27783-27795, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29546512

ABSTRACT

The mineralization of bio-recalcitrant humic acids (HAs) by a solar photo-Fenton (SPF) process was investigated in aqueous system, in order to understand its abatement in real high-HA content matrices, such as sanitary landfill leachates. SPF reactions were performed in tubular photoreactors with CPCs at lab-scale (simulated solar light) and pilot-scale (natural sunlight). Considering the experimental conditions selected for this work, the formation of insoluble HA-Fe3+ complexes was observed. Thus, to avoid HA precipitation, oxalic acid (Ox) was added, since Fe3+-Ox complexes present a higher stability constant. The effect of different process variables on the performance of SPF reaction mediated by ferrioxalate complexes (SPFF) was assessed with excess of H2O2 (50-250 mg L-1), at lab-scale: (i) pH (2.8-4.0); (ii) initial iron concentration (20-60 mg Fe3+ L-1); (iii) iron-oxalate molar ratio (Fe3+-Ox of 1:3 and 1:6); (iv) temperature (20-40 °C); (v) UV irradiance (21-58 WUV m-2); and (vi) commercial-HA concentration (50-200 mg C L-1). At the best lab conditions (40 mg Fe3+ L-1, pH 2.8, 30 °C, 1.6 Fe3+-Ox molar ratio, 41 WUV m-2), commercial HAs' mineralization profile was also compared with HAs extracted from a sanitary landfill leachate, achieving 88 and 91% of dissolved organic carbon removal, respectively, after 3-h irradiation (8.7 kJUV L-1). Both reactions followed the same trend, although a 2.1-fold increase in the reaction rate was observed for the leachate-HA experiment, due to its lower humification degree. At pilot-scale, under natural sunlight, 95% HA mineralization was obtained, consuming 42 mM of H2O2 and 5.9 kJUV L-1 of accumulated UV energy. However, a pre-oxidation during 2.8 kJUV L-1 (12 mM H2O2) was enough to obtain a biodegradability index of 89%, showing the strong feasibility to couple the SPFF process to a downstream biological oxidation, with low chemicals and energetic demands. Graphical abstract ᅟ.


Subject(s)
Humic Substances/analysis , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxalates/chemistry , Sunlight , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Humic Substances/radiation effects , Models, Theoretical , Oxidation-Reduction , Pilot Projects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...