Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Proteins Proteom ; 1872(2): 140988, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38142025

ABSTRACT

Snakebite is a significant health concern in tropical and subtropical regions, particularly in Africa, Asia, and Latin America, resulting in more than 2.7 million envenomations and an estimated one hundred thousand fatalities annually. The Bothrops genus is responsible for the majority of snakebite envenomings in Latin America and Caribbean countries. Accidents involving snakes from this genus are characterized by local symptoms that often lead to permanent sequelae and death. However, specific antivenoms exhibit limited effectiveness in inhibiting local tissue damage. Phospholipase A2-like (PLA2-like) toxins emerge as significant contributors to local myotoxicity in accidents involving Bothrops species. As a result, they represent a crucial target for prospective treatments. Some natural and synthetic compounds have shown the ability to reduce or abolish the myotoxic effects of PLA2-like proteins. In this study, we employed a combination approach involving myographic, morphological, biophysical and bioinformatic techniques to investigate the interaction between chlorogenic acid (CGA) and BthTX-I, a PLA2-like toxin. CGA provided a protection of 71.8% on muscle damage in a pre-incubation treatment. Microscale thermophoresis and circular dichroism experiments revealed that CGA interacted with the BthTX-I while preserving its secondary structure. CGA exhibited an affinity to the toxin that ranks among the highest observed for a natural compound. Bioinformatics simulations indicated that CGA inhibitor binds to the toxin's hydrophobic channel in a manner similar to other phenolic compounds previously investigated. These findings suggest that CGA interferes with the allosteric transition of the non-activated toxin, and the stability of the dimeric assembly of its activated state.


Subject(s)
Chlorogenic Acid , Cinnamates , Chlorogenic Acid/pharmacology , Phospholipases A2/chemistry , Phospholipases A2/metabolism , Phospholipases A2/toxicity
2.
Toxicon ; 191: 48-53, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33387548

ABSTRACT

Crotalus Neutralizing Factor (CNF) was the first phospholipase A2 inhibitor isolated from the plasma of the South American rattlesnake (Crotalus durissus terrificus). Previous biochemical and biophysical studies demonstrate an interaction of CNF with Crotoxin (CTX), the main toxic component in the venom of these snakes. CTX promotes the blockade of neuromuscular transmission by a sum of neurotoxic and myotoxic activities. However, the ability of CNF to inhibit these activities has not been shown until the present study. We performed a myographic study to compare the neuromuscular effects of CTX and the mixture CTX plus CNF in mice phrenic nerve-diaphragm muscle preparations. CTX (5 µg/mL) alone, or pre-incubated with CNF (5, 20 or 50 µg/mL) for 15 min was added to the preparations and maintained throughout the experimentation period. Myotoxicity was assessed by light microscopic analysis of diaphragm muscle after myographic study. CTX (5 µg/mL) blocked both indirectly and directly evoked twitches in neuromuscular preparations. In addition, CTX induced histological alterations in diaphragm muscle. Pre-incubation with CNF (50 µg/mL) abolished both the muscle-paralyzing and muscle-damaging activities of CTX. Therefore, the present study confirms, through functional studies, the antiophidic potential of CNF.


Subject(s)
Crotalid Venoms/toxicity , Crotoxin , Animals , Crotalus , Mice , Neuromuscular Blockade , Phospholipases A2 , Phrenic Nerve
3.
Toxicon ; 96: 46-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25598498

ABSTRACT

A myographic study was performed to compare the neuromuscular effects of venoms and crotoxin-like proteins from Crotalus durissus ruruima and Crotalus durissus cumanensis in mice phrenic-diaphragm preparation. It was concluded that both venoms present neurotoxic activity as a consequence of their crotoxin content. Furthermore, crotoxin from C.d. cumanensis is more potent than that from C.d. ruruima venom. At the concentration range in which both venoms express neurotoxic activity, only C.d. cumanensis venom also manifest a direct myotoxic effect that probably involves the synergic participation of other components than crotoxin.


Subject(s)
Crotalid Venoms/toxicity , Crotalus/metabolism , Crotoxin/toxicity , Neuromuscular Agents/toxicity , Animals , Diaphragm/drug effects , In Vitro Techniques , Mice , Species Specificity
4.
Exp Toxicol Pathol ; 57(3): 239-45, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16410190

ABSTRACT

As a first step to investigate the structure-function relationship of bothropstoxin-I (BthTX-I), a myotoxin from Bothrops jararacussu snake venom, our group previously cloned a recombinant toxin (rBthTX-I) in Escherichia coli. The aim of this work was to characterize the biological activities of this rBthTX-I (1.0 microM) in both phrenic-diaphragm and extensor digitorum longus preparations in vitro, by means of myographic and morphologic techniques. Native BthTX-I (1.0 microM) was used as a standard. The influence of heparin (27.5 microg/ml) upon the biological activities of both toxins was also investigated. rBthTX-I had similar effects to the native toxin inducing blockage of both directly and indirectly evoked contractions in phrenic-diaphragm preparations, and muscle damage characterized by edema, round fibers, and cell areas devoid of myofibrils. Interestingly the paralyzing activity of rBthTX-I was slightly more potent than the native toxin. Heparin prevented paralyzing and myotoxic effects of both the native and recombinant toxins. This work shows that rBthTX-I was expressed in a fully active form, and presents a biological profile similar to the native toxin.


Subject(s)
Crotalid Venoms/toxicity , Paralysis/chemically induced , Animals , Bothrops , Cell Death , Diaphragm/drug effects , Diaphragm/physiology , Escherichia coli/chemistry , Male , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Phrenic Nerve/drug effects , Phrenic Nerve/physiology , Recombinant Proteins , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...