Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Rev. bras. farmacogn ; 28(4): 495-502, July-Aug. 2018. tab, graf
Article in English | LILACS | ID: biblio-958895

ABSTRACT

Abstract This study aimed to prepare hydrogel containing Cymbopogon citratus (DC.) Stapf, Poaceae, volatile oil encapsulated in poly (d,l-lactide-co-glycolide) nanoparticles and to evaluate its in vitro anti-herpetic activity. Polymeric nanoparticles were prepared by solvent emulsification-diffusion method and incorporated in carbomer hydrogels. In vitro release profiles for the nanogel, loaded nanoparticles and hydrogel containing free oil were evaluated by dialysis. Inhibitory activities against Herpes simplex for the formulations were investigated in Vero cells. Hydrogel was developed using nanoparticles with mean diameter of 217.1 nm and negative Zeta potential (−20.5 mV). Volatile oil release profile showed a biphasic pattern with an initial faster release and subsequent sustained phase in all formulations. Nanogel strongly inhibited virus in a non-cytotoxic concentration, 42.16 times lower than free oil, 8.76 and 2.23 times than loaded nanoparticles and hydrogel containing free oil, respectively. These results highlight the potential of nanogel to protect oil against volatilization, control release and improve its anti-herpetic activity.

2.
Nat Prod Res ; 32(22): 2720-2723, 2018 Nov.
Article in English | MEDLINE | ID: mdl-28927283

ABSTRACT

Secondary metabolites isolated from Simira eleiezeriana and Simira glaziovii were evaluated against herpes simplex virus (HSV-1) and (HSV-2). The 50% effective concentrations values (EC50) were calculated from the dose-response curve and the selectivity index (SI) against the virus. The physicochemical data LogP, (PSA), (NRB), (HBA) and (HBD) were obtained using Marvin Sketch. Among the tested compounds, conipheraldeyde, harman and simirane A showed better results with EC50 6.39; 4.90; 4.61 µg/mL and SI 78.3; 11.8; 7.01, respectively, for HSV-1, and EC50 41.2; 71.8; 3.73 µg/mL and SI 12.1; 24.7; 8.7, respectively, for HSV-2. The percentage of inhibition (PI) obtained for HSV-1 were higher than 60%, and for HSV-2 these compounds showed PI > 90%. The physical chemical data showed that the most active compounds satisfy the attributes for drugs with good oral bioavailability.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Phytochemicals/pharmacology , Rubiaceae/chemistry , Animals , Antiviral Agents/isolation & purification , Chlorocebus aethiops , Phytochemicals/isolation & purification , Plant Bark/chemistry , Vero Cells
3.
Carbohydr Polym ; 101: 313-23, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24299779

ABSTRACT

The anti-HMPV (human metapneumovirus) activity was determined for sulfated dl-hybrid galactans obtained from the red seaweed Cryptonemia seminervis and their depolymerized products obtained by reductive partial hydrolysis. Structural studies carried out in three homogeneous depolymerized fractions DS-1, DS-2e and DS-3 (Mw of 51.6-63.8 kDa) showed that these galactans present different chemical characteristics, as monosaccharide composition, content of sulfate groups (14.1-29.9%) and agaran:carrageenan molar ratio diads, 2.7:1 for DS-1 and DS-2e and 1:1 for DS-3. The sulfate groups are located principally on C-2 of ß-d-galactopyranose and 4,6-O-(1'-carboxyethylidene)-ß-d-galactopyranose residues and on C-6 of α-galactose residues. Sulfated dl-galactans and their depolymerized products exhibited antiviral activity at a very early stage of the viral infection cycle. All fractions, except DS-2e inhibited HMPV replication by binding to the viral particle. Besides depolymerized galactans DS-2e and DS-3 inhibited the recognition of cell receptor by HMPV and penetration to the host cell, respectively.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Galactans/chemistry , Galactans/pharmacology , Metapneumovirus/drug effects , Rhodophyta/chemistry , Sulfates/chemistry , Animals , Antiviral Agents/toxicity , Cell Line , Galactans/toxicity , Humans , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...