Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Oxid Med Cell Longev ; 2021: 6679708, 2021.
Article in English | MEDLINE | ID: mdl-33542783

ABSTRACT

Periodontitis is usually sustained from microorganism of oral cavity, like Porphyromonas gingivalis (P. gingivalis). Periodontal disease is an infectious disease that afflicts a large number of people. Researches are investigating on the mesenchymal stem cells (MSCs) response to inflammatory events in combination with antioxidant substances. In particular, ascorbic acid (AA) increased cell proliferation, upregulated the cells pluripotency marker expression, provide a protection from inflammation, and induced the regeneration of periodontal ligament tissue. The purpose of the present research was to investigate the effects of AA in primary culture of human periodontal ligament stem cells (hPDLSCs) exposed to P. gingivalis lipopolysaccharide (LPS-G). The effect of AA on hPDLSCs exposed to LPS-G was determined through the cell proliferation assay. The molecules involved in the inflammatory pathway and epigenetic regulation have been identified using immunofluorescence and Western blot analyses. miR-210 level was quantified by qRT-PCR, and the ROS generation was finally studied. Cells co-treated with LPS-G and AA showed a restoration in terms of cell proliferation. The expression of NFκB, MyD88, and p300 was upregulated in LPS-G exposed cells, while the expression was attenuated in the co-treatment with AA. DNMT1 expression is attenuated in the cells exposed to the inflammatory stimulus. The level of miR-210 was reduced in stimulated cells, while the expression was evident in the hPDLSCs co-treated with LPS-G and AA. In conclusion, the AA could enhance a protective effect in in vitro periodontitis model, downregulating the inflammatory pathway and ROS generation and modulating the miR-210 level.


Subject(s)
Ascorbic Acid/pharmacology , Epigenesis, Genetic/drug effects , Periodontitis/genetics , Stem Cells/drug effects , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Humans , Lipopolysaccharides/isolation & purification , Lipopolysaccharides/pharmacology , Periodontal Ligament/drug effects , Periodontal Ligament/pathology , Periodontal Ligament/physiology , Periodontitis/chemically induced , Periodontitis/microbiology , Periodontitis/pathology , Porphyromonas gingivalis/chemistry , Stem Cells/pathology , Stem Cells/physiology
2.
Materials (Basel) ; 13(3)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033260

ABSTRACT

In restorative dentistry, the main implants characteristic is the ability to promote the osseointegration process as the result of interaction between angiogenesis and osteogenesis events. On the other hand, implants cytocompatibility remains a necessary feature for the success of surgery. The purpose of the current study was to investigate the interaction between human periodontal stem cells and two different types of titanium surfaces, to verify their cytocompatibility and cell adhesion ability, and to detect osteogenic and angiogenic markers, trough cell viability assay (MTT), Confocal Laser Scanning Microscopy (CLSM), scanning electron microscopy (SEM), and gene expression (RT-PCR). The titanium surfaces, machined (CTRL) and dual acid etched (TEST), tested in culture with human periodontal ligament stem cells (hPDLSCs), were previously treated in two different ways, in order to evaluate the effects of CTRL and TEST and define the best implant surface. Furthermore, the average surface roughness (Ra) of both titanium surfaces, CTRL and TEST, has been assessed through atomic force microscopy (AFM). The vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) expressions have been analyzed by RT-PCR, WB analysis, and confocal laser scanning microscopy. Data evidenced that the different morphology and topography of the TEST disk increased cell growth, cell adhesion, improved osteogenic and angiogenic events, as well osseointegration process. For this reason, the TEST surface was more biocompatible than the CTRL disk surface.

3.
Eur J Histochem ; 63(3)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31696691

ABSTRACT

Recently, the development and the application of 3D scaffold able to promote stem cell differentiation represented an essential field of interest in regenerative medicine. In particular, functionalized scaffolds improve bone tissue formation and promote bone defects repair. This research aims to evaluate the role of ascorbic acid (AS) supplementation in an in vitro model, in which a novel 3D-scaffold, bovine pericardium collagen membrane called BioRipar (BioR) was functionalized with human Gingival Mesenchymal Stem Cells (hGMSCs). As extensively reported in the literature, AS is an essential antioxidant molecule involved in the extracellular matrix secretion and in the osteogenic induction. Specifically, hGMSCs were seeded on BioR and treated with 60 and 90 µg/mL of AS in order to assess their growth behavior, the expression of bone specific markers involved in osteogenesis (runt-related transcription factor 2, RUNX2; collagen1A1, COL1A1; osteopontin, OPN; bone morphogenetic protein2/4, BMP2/4), and de novo deposition of calcium. The expression of COL1A1, RUNX2, BMP2/4 and OPN was evaluated by RT-PCR, Western blotting and immunocytochemistry, and proved to be upregulated. Our results demonstrate that after three weeks of treatment AS at 60 and 90 µg/mL operates as an osteogenic inductor in hGMSCs. These data indicate that the AS supplementation produces an enhancement of osteogenic phenotype commitment in an in vitro environment. For this reason, AS could represent a valid support for basic and translational research in tissue engineering and regenerative medicine.


Subject(s)
Ascorbic Acid/metabolism , Collagen Type I/metabolism , Mesenchymal Stem Cells/metabolism , Pericardium/metabolism , Tissue Scaffolds/chemistry , Animals , Biomarkers/metabolism , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Cattle , Cell Differentiation/physiology , Collagen Type I, alpha 1 Chain , Core Binding Factor Alpha 1 Subunit/metabolism , Gingiva/metabolism , Humans , Osteogenesis/physiology , Osteopontin/metabolism , Pericardium/cytology , Regenerative Medicine/methods , Tissue Engineering/methods
4.
Materials (Basel) ; 13(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892218

ABSTRACT

Resin (co)monomers issued from restorative dental materials are able to distribute in the dental pulp or the gingiva, to get to the saliva and to the flowing blood. Many authors have recently shown that methacrylate-based resins, in particular 2-hydroxyethylmethacrylate (HEMA), are responsible of inflammatory and autophagic processes in human dental pulp stem cells (hDPSCs) while ascorbic acid (AS), an antioxidant molecule, can assume a protective role in cell homeostasis. The purpose of the current work was to study if 50 µg/mL AS can affect the inflammatory status induced by 2 mM HEMA in hDPSCs, a tissue-specific cell population. Cell proliferation, cytokine release, morphological arrangement and reactive oxygen species (ROS) formation were determined respectively by MTT, ELISA, morphological analysis and dichlorofluorescein assay. The hDPSCs exposed to HEMA let to an increment of ROS formation and in the expression of high levels of inflammatory mediators such as nuclear factor-κB (NFkB), inflammatory cytokines such as interleukin IL6, IL8, interferon (IFN)É£ and monocyte chemoattractant protein (MCP)1. Moreover, HEMA induced the up-regulation of pospho-extracellular signal-regulated kinases (pERK)/ERK signaling pathway associated to the nuclear translocation. AS treatment significantly down-regulated the levels of pro-inflammatory mediators. Then, the natural product AS reduced the detrimental result promoted by methacrylates in clinical dentistry, in fact restore cell proliferation, reduce the pro-inflammatory cytokine, downregulate ROS production and of NFkB/pERK/ERK signaling path. In synthesis, AS, could improve the quality of dental care and play a strategic role as innovative endodontic compound easy to use and with reasonable cost.

5.
Photomed Laser Surg ; 36(12): 647-652, 2018 Dec.
Article in English | MEDLINE | ID: mdl-31697636

ABSTRACT

Background: Orthodontics of the 21st century requires aesthetic, painless, predictable, and quick treatments. This demand for faster results generated orthodontic movement acceleration protocols (OMAPs); among other OMAPs we present low-level laser (LLL) as a candidate. Objective: To evaluate levels of interleukin (IL)-1, IL-10, and type 1 collagen in the periodontal ligament of first molars of rats subjected to orthodontic traction with and without LLL irradiation, compared with untreated controls (CO), and to evaluate whether the dose of LLL used in this work is eligible as an OMAP. Materials and methods: A total of 35 male Wistar rats were distributed into three groups: group 1 NI (nonirradiated) n = 15, group 2 IR (laser irradiated using 5 J, 177 J/cm2, and 100 mW applied in contact to the vestibular mesial, vestibular distal, and palatal faces of gum tissue around molar region for 50 sec each point, for 3 consecutive days, immediately 24 and 48 h after orthodontic device placement.) n = 15, and group 3 CO n = 5; groups 1 and 2 were subjected to orthodontic force and each group was divided into three subgroups that were sacrificed after 3, 5, and 7 days, IL-1/10 and COL-1 levels were analyzed. Results: In the IR group, levels of IL-1/10 and COL-1 showed peak anticipation after LLL irradiation compared with those in the NI and CO groups. Conclusions: These results can also infer that this dose of LLL can be used as an OMAP.


Subject(s)
Laser Therapy/methods , Low-Level Light Therapy/methods , Tooth Movement Techniques , Animals , Collagen Type I/analysis , Interleukins/analysis , Male , Molar/chemistry , Periodontal Ligament/chemistry , Rats , Rats, Wistar
6.
Photomed Laser Surg, v. 36, n. 12, p. 647-52, dez. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2638

ABSTRACT

Background: Orthodontics of the 21st century requires aesthetic, painless, predictable, and quick treatments. This demand for faster results generated orthodontic movement acceleration protocols (OMAPs); among other OMAPs we present low-level laser (LLL) as a candidate. Objective: To evaluate levels of interleukin (IL)-1, IL-10, and type 1 collagen in the periodontal ligament of first molars of rats subjected to orthodontic traction with and without LLL irradiation, compared with untreated controls (CO), and to evaluate whether the dose of LLL used in this work is eligible as an OMAP. Materials and methods: A total of 35 male Wistar rats were distributed into three groups: group 1 NI (nonirradiated) n = 15, group 2 IR (laser irradiated using 5 J, 177 J/cm(2), and 100 mW applied in contact to the vestibular mesial, vestibular distal, and palatal faces of gum tissue around molar region for 50 sec each point, for 3 consecutive days, immediately 24 and 48 h after orthodontic device placement.) n = 15, and group 3 CO n = 5; groups 1 and 2 were subjected to orthodontic force and each group was divided into three subgroups that were sacrificed after 3, 5, and 7 days, IL-1/10 and COL-1 levels were analyzed. Results: In the IR group, levels of IL-1/10 and COL-1 showed peak anticipation after LLL irradiation compared with those in the NI and CO groups. Conclusions: These results can also infer that this dose of LLL can be used as an OMAP.

7.
Photomed Laser Surg ; 36(12): p. 647-652, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15761

ABSTRACT

Background: Orthodontics of the 21st century requires aesthetic, painless, predictable, and quick treatments. This demand for faster results generated orthodontic movement acceleration protocols (OMAPs); among other OMAPs we present low-level laser (LLL) as a candidate. Objective: To evaluate levels of interleukin (IL)-1, IL-10, and type 1 collagen in the periodontal ligament of first molars of rats subjected to orthodontic traction with and without LLL irradiation, compared with untreated controls (CO), and to evaluate whether the dose of LLL used in this work is eligible as an OMAP. Materials and methods: A total of 35 male Wistar rats were distributed into three groups: group 1 NI (nonirradiated) n = 15, group 2 IR (laser irradiated using 5 J, 177 J/cm(2), and 100 mW applied in contact to the vestibular mesial, vestibular distal, and palatal faces of gum tissue around molar region for 50 sec each point, for 3 consecutive days, immediately 24 and 48 h after orthodontic device placement.) n = 15, and group 3 CO n = 5; groups 1 and 2 were subjected to orthodontic force and each group was divided into three subgroups that were sacrificed after 3, 5, and 7 days, IL-1/10 and COL-1 levels were analyzed. Results: In the IR group, levels of IL-1/10 and COL-1 showed peak anticipation after LLL irradiation compared with those in the NI and CO groups. Conclusions: These results can also infer that this dose of LLL can be used as an OMAP.

8.
Eur J Histochem ; 61(2): 2791, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28735521

ABSTRACT

The present study was aimed at investigating whether human Periodontal Ligament Stem Cells (hPDLSCs) were capable of sensing and reacting to lipopolysaccharide from Porphyromonas gingivalis (LPS-G) which is widely recognized as a major pathogen in the development and progression of periodontitis. At this purpose hPDLCs were stimulated with 5 µg/mL LPS-G various times and the expression of toll-like receptor 4 (TLR4) was evaluated. Toll-like receptors (TLRs) play an essential role in innate immune signaling in response to microbial infections, and in particular TLR4, type-I transmembrane proteins, has been shown recognizing LPS-G. Our results put in evidence, in treated samples, an overexpression of TLR4 indicating that, hPDLSCs express a functional TLR4 receptor. In addition, LPS-G challenge induces a significant cell growth decrease starting from 24 h until 72 h of treatment. LPS-G leads the activation of the TLR4/MyD88 complex, triggering the secretion of proinflammatory cytokines cascade as: IL-1α, IL-8, TNF-α and ß and EOTAXIN. Moreover, the upregulation of pERK/ERK signaling pathways and NFkB nuclear translocation was evident. On the basis of these observations, we conclude that hPDLSCs could represent an appropriate stem cells niche modeling leading to understand and evaluate the biological mechanisms of periodontal stem cells in response to LPS-G, mimicking in vitro an inflammatory process occurring in vivo in periodontal disease.


Subject(s)
Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , Membrane Glycoproteins/metabolism , NF-kappa B/metabolism , Porphyromonas gingivalis/chemistry , Receptors, Interleukin-1/metabolism , Signal Transduction/drug effects , Stem Cells/drug effects , Adjuvants, Immunologic/pharmacology , Cytokines/immunology , Humans , Inflammation Mediators/metabolism , Periodontal Ligament/cytology , Periodontitis/microbiology , Periodontitis/physiopathology , Stem Cells/cytology , Stem Cells/immunology
9.
Cytokine ; 96: 261-272, 2017 08.
Article in English | MEDLINE | ID: mdl-28511117

ABSTRACT

The present research was aimed at evaluating the effect of the conditioned medium (CM) from human periodontal ligament stem cells (hPDLSCs) obtained from healthy donors (hPDLSCs-CM) and from Relapsing-Remitting Multiple Sclerosis patients (RR-MS-CM) on inflammatory response induced by Porphyromonas gingivalis lipopolysaccharide (LPS-G) in a monocytoid human cell line (THP-1) and human oligodendrocyte cell line (MO3.13). Human periodontal ligament biopsies were carried out from control donor patients and selected RR-MS donors. Sample tissues were obtained from premolar teeth during root scaling and subsequently cultured. The effect of hPDLSCs-CM and RR-MS-CM on cell viability in PMA differentiated THP-1 (as a model of microglia) was measured using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assay. The same experiments were performed in undifferentiated and differentiated MO3.13 cells used as models of progenitor cells and oligodendrocytes, respectively. The expression of tumor necrosis factor alpha (TNF)-α, interleukin (IL)-1ß and IL-6 was evaluated by Real-Time Polymerase Chain Reaction (RT-PCR), and enzyme-linked immunosorbent assay (ELISA). The expression level of the Toll-like receptor 4 (TLR-4), for which LPS-G is a ligand, was evaluated by Western blot analysis. The results were analyzed by ANOVA using Graph Pad Prism software. LPS-G significantly increased TNFα, IL-1ß and IL-6 mRNA expression and protein levels in the differentiated THP-1 cells and oligodendrocyte MO3.13 progenitor cells. Treatment with hPDLSCs-CM or with RR-MS-CM significantly attenuated the LPS-induced expression and production of these pro-inflammatory cytokines. The CM from both healthy donors and RR-MS patients also reduced the LPS-G stimulated protein levels of TLR-4 in differentiated THP-1 cells. On the whole our data add new evidence on the anti-inflammatory effects of these peculiar stem cells even when derived from RR-MS patients and open novel perspectives in the therapeutic use of autologous periodontal stem cells in neuroinflammatory/neurodegenerative diseases including MS.


Subject(s)
Cytokines/metabolism , Lipopolysaccharides/immunology , Monocytes/metabolism , Multiple Sclerosis, Relapsing-Remitting/immunology , Oligodendroglia/metabolism , Porphyromonas gingivalis/immunology , Stem Cells/physiology , Biopsy , Cell Differentiation , Cell Line , Cell Survival/drug effects , Cells, Cultured , Culture Media, Conditioned , Cytokines/genetics , Enzyme-Linked Immunosorbent Assay , Humans , Monocytes/immunology , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Oligodendroglia/immunology , Periodontal Ligament/metabolism , Periodontal Ligament/pathology , Real-Time Polymerase Chain Reaction , Stem Cells/metabolism , THP-1 Cells
10.
Cell Signal ; 28(11): 1631-41, 2016 11.
Article in English | MEDLINE | ID: mdl-27478064

ABSTRACT

Stem cells isolated from human adult tissue niche represent a promising source for neural differentiation. Human Periodontal Ligament Stem Cells (hPDLSCs) originating from the neural crest are particularly suitable for induction of neural commitment. In this study, under xeno-free culture conditions, in undifferentiated hPDLSCs and in hPDLSCs induced to neuronal differentiation by basic Fibroblast Growth Factor, the level of some neural markers have been analyzed. The hPDLSCs spontaneously express Nestin, a neural progenitor marker. In these cells, the neurogenic process induced to rearrange the cytoskeleton, form neurospheres and express higher levels of Nestin and Tyrosine Hydroxylase, indicating neural induction. Protein Kinase C (PKC) is highly expressed in neural tissue and has a key role in neuronal functions. In particular the Ca(2+) and diacylglycerol-dependent activation of PKCα isozyme is involved in the regulation of neuronal differentiation. Another main component of the pathways controlling neuronal differentiation is the Growth Associated Protein-43 (GAP-43), whose activity is strictly regulated by PKC. The aim of this study is to investigate the role of PKCα/GAP-43 nuclear signal transduction pathway during neuronal commitment of hPDLSCs. During hPDLSCs neurogenic commitment the levels of p-PKC and p-GAP-43 increased both in cytoplasmic and nuclear compartment. PKCα nuclear translocation induced GAP-43 movement to the cytoplasm, where it is known to regulate growth cone dynamics and neuronal differentiation. Moreover, the degree of cytosolic Ca(2+) mobilization appeared to be more pronounced in differentiated hPDLSCs than in undifferentiated cells. This study provides evidences of a new PKCα/GAP-43 nuclear signalling pathway that controls neuronal differentiation in hPDLSCs, leading the way to a potential use of these cells in cell-based therapy in neurodegenerative diseases.


Subject(s)
Cell Nucleus/metabolism , Neural Crest/cytology , Neurogenesis , Periodontal Ligament/cytology , Protein Kinase C-alpha/metabolism , Stem Cells/cytology , Stem Cells/enzymology , Biomarkers/metabolism , Calcium/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , GAP-43 Protein/metabolism , Humans , Intracellular Space/metabolism , Isoenzymes/metabolism , Neurons/cytology , Neurons/enzymology , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...