Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Res ; 34(6): 1204-1216, 2017 06.
Article in English | MEDLINE | ID: mdl-28315084

ABSTRACT

PURPOSE: An optimized methodology for the development of a new generation of lipid nanoparticles, the multiple lipid nanoparticles (MLN) is described. MLN have characteristics between nanostructured lipid carriers (NLC) and multiple emulsions (W/O/W), but without the outer aqueous phase. METHODS: The production is based on a hot homogenization method combined with high shear and ultrasonication. The antiretroviral agent lamivudine (3TC), was loaded in the MLN. For comparison purposes, NLC-3TC formulation was also developed and physico-chemically characterized by the same parameters as MLN-3TC. The development and optimization of MLN and NLC formulations were supported by a Quality by Design (QbD) approach. RESULTS: The MLN-3TC formulation exhibited a size of about 450 nm, polydispersity <0.3 and negative zeta potential > -20 mV. Furthermore, the morphology assessed by TEM showed a structure with multiples aqueous vacuoles. MLN-3TC was physically stable for at least 45 days, had low cytotoxicity and drug release studies showed a sustained and controlled release of 3TC under gastric and plasma-simulated conditions (at pH 7.4 for about 45 h). CONCLUSIONS: The optimized formulations present suitable profiles for oral administration. Overall, the results reveal that MLN present higher loading capacity and storage stability than NLC.


Subject(s)
Anti-Retroviral Agents/pharmacology , Lamivudine/pharmacology , Lipids/chemistry , Nanoparticles/chemistry , Administration, Oral , Anti-Retroviral Agents/chemistry , Cell Line , Cell Survival/drug effects , Drug Carriers , Drug Compounding , Drug Liberation , Drug Stability , Emulsions , Humans , Lamivudine/chemistry , Particle Size , Research Design , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...