Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Test Anal ; 8(8): 858-63, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26361079

ABSTRACT

Drug candidates, which have the potential of enhancing athletic performance represent a risk of being misused in elite sport. Therefore, there is a need for early consideration by anti-doping authorities and implementation into sports drug testing programmes. The hypoxia-inducible factor (HIF) or prolyl hydroxylase inhibitor (PHI) GSK1278863 represents an advanced candidate of an emerging class of therapeutics that possess substantial potential for abuse in sport due to their capability to stimulate the biogenesis of erythrocytes and, consequently, the individual's oxygen transport capacity. A thorough characterization of such analytes by technologies predominantly used for doping control purposes and the subsequent implementation of the active drug and/or its main urinary metabolite(s) are vital for comprehensive, preventive, and efficient anti-doping work. In the present study, the HIF PHI drug candidate GSK1278863 (comprising a 6-hydroxypyrimidine-2,4-dione nucleus) and its bishydroxylated metabolite M2 (GSK2391220A) were studied regarding their mass spectrometric behaviour under electrospray ionization (ESI-MS/MS) conditions. Synthesized reference materials were used to elucidate dissociation pathways by means of quadrupole/time-of-flight high resolution/high accuracy tandem mass spectrometry, and their detection from spiked urine and elimination study urine samples under routine doping control conditions was established using liquid chromatography-electrospray ionization-tandem mass spectrometry with direct injection. Dissociation pathways to diagnostic product ions of GSK1278863 (e.g. m/z 291, 223, and 122) were proposed as substantiated by determined elemental compositions and MS(n) experiments as well as comparison to spectra of the bishydroxylated analogue M2. An analytical assay based on direct urine injection using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed for the simultaneous determination of GSK1278863 in combination with its bishydroxylated metabolite M2. Validation parameters including limit of detection (0.5-1 ng/mL), linearity, specificity, ion suppression/enhancement (<10%), intra- and inter-day precision (6-22%) were determined, demonstrating the fitness-for-purpose of the assay for doping control screening of urine samples for the presence of the drug candidate and its main metabolite and for expanding current anti-doping efforts to this new class of therapeutics. However, administration study urine sample analysis suggested the use of M2 rather than the intact drug due to extensive metabolic conversion. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Barbiturates/urine , Glycine/analogs & derivatives , Prolyl-Hydroxylase Inhibitors/urine , Spectrometry, Mass, Electrospray Ionization/methods , Substance Abuse Detection/methods , Chromatography, Liquid/methods , Doping in Sports , Glycine/urine , Humans , Limit of Detection , Tandem Mass Spectrometry/methods , Urinalysis/methods
2.
Br J Clin Pharmacol ; 78(6): 1185-200, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25041729

ABSTRACT

Human radiolabel studies are traditionally conducted to provide a definitive understanding of the human absorption, distribution, metabolism and excretion (ADME) properties of a drug. However, advances in technology over the past decade have allowed alternative methods to be employed to obtain both clinical ADME and pharmacokinetic (PK) information. These include microdose and microtracer approaches using accelerator mass spectrometry, and the identification and quantification of metabolites in samples from classical human PK studies using technologies suitable for non-radiolabelled drug molecules, namely liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. These recently developed approaches are described here together with relevant examples primarily from experiences gained in support of drug development projects at GlaxoSmithKline. The advantages of these study designs together with their limitations are described. We also discuss special considerations which should be made for a successful outcome to these new approaches and also to the more traditional human radiolabel study in order to maximize knowledge around the human ADME properties of drug molecules.


Subject(s)
Pharmacokinetics , Carbon Radioisotopes , Chromatography, Liquid , Humans , Magnetic Resonance Spectroscopy , Tandem Mass Spectrometry , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...