Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(6): e202313485, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37905585

ABSTRACT

Water cycling across the membrane transporters is considered a hallmark of cellular metabolism and it could be of high diagnostic relevance in the characterization of tumors and other diseases. The method relies on the response of intracellular proton exchanging molecules to the presence of extracellular Gd-based contrast agents (GBCAs). Paramagnetic GBCAs enhances the relaxation rate of water molecules in the extracellular compartment and, through membrane exchange, the relaxation enhancement is transferred to intracellular molecules. The effect is detected at the MRI-CEST (Magnetic Resonance Imaging - Chemical Exchange Saturation Transfer) signal of intracellular proton exchanging molecules. The magnitude of the change in the CEST response reports on water cycling across the membrane. The method has been tested on Red Blood Cells and on orthotopic murine models of breast cancer with different degree of malignancy (4T1, TS/A and 168FARN). The distribution of voxels reporting on membrane permeability fits well with the cells' aggressiveness and acts as an early reporter to monitor therapeutic treatments.


Subject(s)
Brain Neoplasms , Protons , Mice , Humans , Animals , Magnetic Resonance Imaging/methods , Hydrogen-Ion Concentration , Contrast Media/chemistry , Water
2.
Anal Chem ; 95(49): 17997-18005, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38047582

ABSTRACT

We demonstrate that enzyme-catalyzed reactions can be observed in zero- and low-field NMR experiments by combining recent advances in parahydrogen-based hyperpolarization methods with state-of-the-art magnetometry. Specifically, we investigated two model biological processes: the conversion of fumarate into malate, which is used in vivo as a marker of cell necrosis, and the conversion of pyruvate into lactate, which is the most widely studied metabolic process in hyperpolarization-enhanced imaging. In addition to this, we constructed a microfluidic zero-field NMR setup to perform experiments on microliter-scale samples of [1-13C]fumarate in a lab-on-a-chip device. Zero- to ultralow-field (ZULF) NMR has two key advantages over high-field NMR: the signals can pass through conductive materials (e.g., metals), and line broadening from sample heterogeneity is negligible. To date, the use of ZULF NMR for process monitoring has been limited to studying hydrogenation reactions. In this work, we demonstrate this emerging analytical technique for more general reaction monitoring and compare zero- vs low-field detection.


Subject(s)
Magnetic Resonance Imaging , Pyruvic Acid , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Hydrogenation , Pyruvic Acid/metabolism , Fumarates
3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753510

ABSTRACT

Hyperpolarized fumarate is a promising biosensor for carbon-13 magnetic resonance metabolic imaging. Such molecular imaging applications require nuclear hyperpolarization to attain sufficient signal strength. Dissolution dynamic nuclear polarization is the current state-of-the-art methodology for hyperpolarizing fumarate, but this is expensive and relatively slow. Alternatively, this important biomolecule can be hyperpolarized in a cheap and convenient manner using parahydrogen-induced polarization. However, this process requires a chemical reaction, and the resulting solutions are contaminated with the catalyst, unreacted reagents, and reaction side-product molecules, and are hence unsuitable for use in vivo. In this work we show that the hyperpolarized fumarate can be purified from these contaminants by acid precipitation as a pure solid, and later redissolved to a desired concentration in a clean aqueous solvent. Significant advances in the reaction conditions and reactor equipment allow for formation of hyperpolarized fumarate at 13C polarization levels of 30-45%.


Subject(s)
Biosensing Techniques , Carbon-13 Magnetic Resonance Spectroscopy , Fumarates/isolation & purification , Fumarates/metabolism , Molecular Imaging/methods , Water/chemistry , Solutions
4.
Chemphyschem ; 22(11): 1042-1048, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33720491

ABSTRACT

An efficient synthesis of vinyl-[1-13 C]pyruvate has been reported, from which 13 C hyperpolarized (HP) ethyl-[1-13 C]pyruvate has been obtained by means of ParaHydrogen Induced Polarization (PHIP). Due to the intrinsic lability of pyruvate, which leads quickly to degradation of the reaction mixture even under mild reaction conditions, the vinyl-ester has been synthesized through the intermediacy of a more stable ketal derivative. 13 C and 1 H hyperpolarizations of ethyl-[1-13 C]pyruvate, hydrogenated using ParaHydrogen, have been compared to those observed on the more widely used allyl-derivative. It has been demonstrated that the spin order transfer from ParaHydrogen protons to 13 C, is more efficient on the ethyl than on the allyl-esterdue to the larger J-couplings involved. The main requirements needed for the biological application of this HP product have been met, i. e. an aqueous solution of the product at high concentration (40 mM) with a good 13 C polarization level (4.8 %) has been obtained. The in vitro metabolic transformation of the HP ethyl-[1-13 C]pyruvate, catalyzed by an esterase, has been observed. This substrate appears to be a good candidate for in vivo metabolic investigations using PHIP hyperpolarized probes.


Subject(s)
Hydrogen/chemistry , Pyruvates/chemistry , Carbon Isotopes , Hydrogenation , Magnetic Resonance Spectroscopy , Molecular Structure , Water/chemistry
5.
MAGMA ; 34(1): 25-47, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33527252

ABSTRACT

ParaHydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, but its application to biological investigations has been hampered, so far, due to chemical challenges. PHIP is obtained by means of the addition of hydrogen, enriched in the para-spin isomer, to an unsaturated substrate. Both hydrogen atoms must be transferred to the same substrate, in a pairwise manner, by a suitable hydrogenation catalyst; therefore, a de-hydrogenated precursor of the target molecule is necessary. This has strongly limited the number of parahydrogen polarized substrates. The non-hydrogenative approach brilliantly circumvents this central issue, but has not been translated to in-vivo yet. Recent advancements in hydrogenative PHIP (h-PHIP) considerably widened the possibility to hyperpolarize metabolites and, in this review, we will focus on substrates that have been obtained by means of this method and used in vivo. Attention will also be paid to the requirements that must be met and on the issues that have still to be tackled to obtain further improvements and to push PHIP substrates in biological applications.


Subject(s)
Hydrogen/chemistry , Hydrogenation
6.
Front Oncol ; 10: 497, 2020.
Article in English | MEDLINE | ID: mdl-32363160

ABSTRACT

Nuclear Magnetic Resonance allows the non-invasive detection and quantitation of metabolites to be carried out in cells and tissues. This means that that metabolic changes can be revealed without the need for sample processing and the destruction of the biological matrix. The main limitation to the application of this method to biological studies is its intrinsic low sensitivity. The introduction of hyperpolarization techniques and, in particular, of dissolution-Dynamic Nuclear Polarization (d-DNP) and ParaHydrogen Induced Polarization (PHIP) is a significant breakthrough for the field as the MR signals of molecules and, most importantly, metabolites, can be increased by some orders of magnitude. Hyperpolarized pyruvate is the metabolite that has been most widely used for the investigation of metabolic alterations in cancer and other diseases. Although d-DNP is currently the gold-standard hyperpolarization method, its high costs and intrinsically slow hyperpolarization procedure are a hurdle to the application of this tool. However, PHIP is cost effective and fast and hyperpolarized pyruvate can be obtained using the so-called Side Arm Hydrogenation approach (PHIP-SAH). The potential toxicity of a solution of the hyperpolarized metabolite that is obtained in this way is presented herein. HP pyruvate has then been used for metabolic studies on different prostate cancer cells lines (DU145, PC3, and LnCap). The results obtained using the HP metabolite have been compared with those from conventional biochemical assays.

7.
J Am Chem Soc ; 141(51): 20209-20214, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31762271

ABSTRACT

Hyperpolarized fumarate can be used as a probe of real-time metabolism in vivo, using carbon-13 magnetic resonance imaging. Dissolution dynamic nuclear polarization is commonly used to produce hyperpolarized fumarate, but a cheaper and faster alternative is to produce hyperpolarized fumarate via PHIP (parahydrogen-induced polarization). In this work, we trans-hydrogenate [1-13C]acetylene dicarboxylate with para-enriched hydrogen using a commercially available Ru catalyst in water to produce hyperpolarized [1-13C]fumarate. We show that fumarate is produced in 89% yield, with succinate as a side product in 11% yield. The proton polarization is converted into 13C magnetization using a constant adiabaticity field cycle, and a polarization level of 24% is achieved using 86% para-enriched hydrogen gas. We inject the hyperpolarized [1-13C]fumarate into cell suspensions and track the metabolism. This work opens the path to greatly accelerated preclinical studies using fumarate as a biomarker.


Subject(s)
Fumarate Hydratase/analysis , Fumarates/chemistry , Nuclear Magnetic Resonance, Biomolecular , Carbon Isotopes , Fumarate Hydratase/metabolism , Fumarates/metabolism , Molecular Structure , Time Factors
8.
Chemphyschem ; 20(2): 318-325, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30248218

ABSTRACT

The kinetics of metabolic processes can be assessed, in real time by means of MR hyperpolarized (HP) metabolites. [1-13 C]pyruvate, hyperpolarized by means of d-DNP, is, by far, the substrate most widely applied to the investigation of several pathologies characterized by deregulated glycolytic metabolic networks, including cancer. Hyperpolarization of [1-13 C]pyruvate by means of the cost effective, fast and easy to handle PHIP-SAH (para-hydrogen induced polarization-side arm hydrogenation) method opens-up a pathway for the application of HP metabolites to a wide range of cancer-related studies. Herein, we report the first application of PHIP-SAH hyperpolarized [1-13 C]pyruvate in the investigation of upregulated glycolysis in two murine breast cancer cell lines (168FARN and 4T1). The results obtained using HP pyruvate have been validated with a conventional biochemical assay and are coherent with previously-reported lactate dehydrogenase activity measured in those cells.


Subject(s)
Mammary Neoplasms, Animal/metabolism , Pyruvic Acid/metabolism , Animals , Carbon Isotopes , Cell Line, Tumor , Hydrogenation , L-Lactate Dehydrogenase/metabolism , Mammary Neoplasms, Animal/enzymology , Mammary Neoplasms, Animal/pathology , Mice
9.
Sci Rep ; 8(1): 8366, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29849091

ABSTRACT

Many imaging methods have been proposed to act as surrogate markers of organ damage, yet for many candidates the essential biomarkers characteristics of the injured organ have not yet been described. Hyperpolarized [1-13C]pyruvate allows real time monitoring of metabolism in vivo. ParaHydrogen Induced Polarization (PHIP) is a portable, cost effective technique able to generate 13C MR hyperpolarized molecules within seconds. The introduction of the Side Arm Hydrogenation (SAH) strategy offered a way to widen the field of PHIP generated systems and to make this approach competitive with the currently applied dissolution-DNP (Dynamic Nuclear Polarization) method. Herein, we describe the first in vivo metabolic imaging study using the PHIP-SAH hyperpolarized [1-13C]pyruvate. In vivo maps of pyruvate and of its metabolic product lactate have been acquired on a 1 T MRI scanner. By comparing pyruvate/lactate 13C label exchange rate in a mouse model of dilated cardiomyopathy, it has been found that the metabolic dysfunction occurring in the cardiac muscle of the diseased mice can be detected well before the disease can be assessed by echocardiographic investigations.


Subject(s)
Magnetic Resonance Spectroscopy , Molecular Imaging , Pyruvic Acid/metabolism , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Lamin Type A/genetics , Male , Mice , Mutation , Time Factors
10.
J Magn Reson ; 289: 12-17, 2018 04.
Article in English | MEDLINE | ID: mdl-29448129

ABSTRACT

The use of [1-13C]pyruvate, hyperpolarized by dissolution-Dynamic Nuclear Polarization (d-DNP), in in vivo metabolic studies has developed quickly, thanks to the imaging probe's diagnostic relevance. Nevertheless, the cost of a d-DNP polarizer is quite high and the speed of hyperpolarization process is relatively slow, meaning that its use is limited to few research laboratories. ParaHydrogen Induced Polarization Side Arm Hydrogenation (PHIP-SAH) (Reineri et al., 2015) is a cost effective and easy-to-handle method that produces 13C-MR hyperpolarization in [1-13C]pyruvate and other metabolites. This work aims to identify the main determinants of the hyperpolarization levels observed in C13-pyruvate using this method. By dissecting the various steps of the PHIP-SAH procedure, it has been possible to assess the role of several experimental parameters whose optimization must be pursued if this method is to be made suitable for future translational steps. The search for possible solutions has led to improvements in the polarization of sodium [1-13C]pyruvate from 2% to 5%. Moreover, these results suggest that observed polarization levels could be increased considerably by an automatized procedure which would reduce the time required for the work-up passages that are currently carried out manually. The results reported herein mean that the attainment of polarization levels suitable for the metabolic imaging applications of these hyperpolarized substrates show significant promise.


Subject(s)
Pyruvic Acid/chemistry , Radiopharmaceuticals/chemistry , Carbon Isotopes , Hydrogen/chemistry , Hydrogenation , Magnetic Resonance Spectroscopy
11.
Chemistry ; 23(5): 1200-1204, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-27870463

ABSTRACT

Hyperpolarization of the 13 C magnetic resonance signal of l-[1-13 C]lactate has been obtained using the chemically based, cost-effective method called parahydrogen-induced polarization by means of side-arm hydrogenation (PHIP-SAH). Two ester derivatives of lactate were tested and the factors that determine the polarization level on the product have been investigated in detail. The metabolic conversion of hyperpolarized l-[1-13 C]lactate into pyruvate has been observed in vitro using lactate dehydrogenase (LDH) and in a cells lysate. From the acquisition of a series of 13 C NMR spectra, the metabolic build-up of the [1-13 C]pyruvate signal has been observed. These studies demonstrate that, even if the experimental set-up used for these PHIP-SAH hyperpolarization studies is still far from optimal, the attained polarization level is already sufficient to carry out in vitro metabolic studies.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy , Hydrogen/chemistry , Hydrogenation , L-Lactate Dehydrogenase/metabolism , Lactic Acid/chemistry , Lactic Acid/metabolism , Pyruvates/chemistry , Pyruvates/metabolism
12.
NMR Biomed ; 29(8): 1022-7, 2016 08.
Article in English | MEDLINE | ID: mdl-27271484

ABSTRACT

The use of [1-(13) C]pyruvate hyperpolarized by means of dynamic nuclear polarization provides a direct way to track the metabolic transformations of this metabolite in vivo and in cell cultures. The identification of the intra- and extracellular contributions to the (13) C NMR resonances is not straightforward. In order to obtain information about the rate of pyruvate and lactate transport through the cellular membrane, we set up a method that relies on the sudden 'quenching' of the extracellular metabolites' signal. The paramagnetic Gd-tetraazacyclododecane triacetic acid (Gd-DO3A) complex was used to dramatically decrease the longitudinal relaxation time constants of the (13) C-carboxylate resonances of both pyruvate and lactate. When Gd-DO3A was added to an MCF-7 cellular culture, which had previously received a dose of hyperpolarized [1-(13) C]pyruvate, the contributions of the extracellular pyruvate and lactate signals were deleted. From the analysis of the decay curves of the (13) C-carboxylate resonances of pyruvate and lactate it was possible to extract information about the exchange rate of the two metabolites across the cellular membrane. In particular, it was found that, in the reported experimental conditions, the lactate transport from the intra- to the extracellular space is not much lower than the rate of lactate formation. The method reported herein is non-destructive and it could be translated to in vivo studies. It opens a route for the use of hyperpolarized pyruvate to assess altered activity of carboxylate transporter proteins that may occur in pathological conditions. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Biological Transport, Active/physiology , Carbon-13 Magnetic Resonance Spectroscopy , Cell Membrane/metabolism , Lactic Acid/metabolism , Proton Magnetic Resonance Spectroscopy , Pyruvic Acid/metabolism , Contrast Media/pharmacokinetics , Extracellular Space/metabolism , Humans , Intracellular Space/metabolism , MCF-7 Cells , Metabolic Clearance Rate , Organometallic Compounds/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics
13.
Nanotechnology ; 27(28): 285104, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27265726

ABSTRACT

Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar (1)H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

14.
J Phys Chem B ; 119(31): 10035-41, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26161454

ABSTRACT

Hyperpolarization of (13)C carboxylate signals of metabolically relevant molecules, such as acetate and pyruvate, was recently obtained by means of ParaHydrogen Induced Polarization by Side Arm Hydrogenation (PHIP-SAH). This method relies on functionalization of the carboxylic acid with an unsaturated alcohol (side arm), hydrogenation of the unsaturated alcohol using parahydrogen, and polarization transfer to the target (13)C signal. In this case, parahydrogen protons are added three to four bonds away from the target (13)C nucleus, while biologically relevant molecules had been hyperpolarized, using parahydrogen, through hydrogenation of an unsaturated bond adjacent to the target (13)C signal. The herein reported results show that the same polarization level can be obtained on the (13)C carboxylate signal of an ester by means of addition of parahydrogen to the acidic or to the alcoholic moiety and successive application of magnetic field cycle (MFC). Experimental results are supported by calculations that allow one to predict that, upon accurate control of magnetic field strength and speed of the passages, more than 20% polarization can be achieved on the (13)C-carboxylate resonance of the esters by means of side arm hydrogenation and MFC.


Subject(s)
Hydrogen/chemistry , Alcohols/chemistry , Carbon Isotopes , Carboxylic Acids/chemistry , Magnetic Fields , Magnetic Resonance Spectroscopy/standards , Molecular Structure , Protons , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...