Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 718713, 2021.
Article in English | MEDLINE | ID: mdl-35046967

ABSTRACT

Wider pea (Pisum sativum L.) cultivation has great interest for European agriculture, owing to its favorable environmental impact and provision of high-protein feedstuff. This work aimed to investigate the extent of genotype × environment interaction (GEI), genetically based trade-offs and polygenic control for crude protein content and grain yield of pea targeted to Italian environments, and to assess the efficiency of genomic selection (GS) as an alternative to phenotypic selection (PS) to increase protein yield per unit area. Some 306 genotypes belonging to three connected recombinant inbred line (RIL) populations derived from paired crosses between elite cultivars were genotyped through genotyping-by-sequencing and phenotyped for grain yield and protein content on a dry matter basis in three autumn-sown environments of northern or central Italy. Line variation for mean protein content ranged from 21.7 to 26.6%. Purely genetic effects, compared with GEI effects, were over two-fold larger for protein content, and over 2-fold smaller for grain and protein yield per unit area. Grain yield and protein content exhibited no inverse genetic correlation. A genome-wide association study revealed a definite polygenic control not only for grain yield but also for protein content, with small amounts of trait variation accounted for by individual loci. On average, the GS predictive ability for individual RIL populations based on the rrBLUP model (which was selected out of four tested models) using by turns two environments for selection and one for validation was moderately high for protein content (0.53) and moderate for grain yield (0.40) and protein yield (0.41). These values were about halved for inter-environment, inter-population predictions using one RIL population for model construction to predict data of the other populations. The comparison between GS and PS for protein yield based on predicted gains per unit time and similar evaluation costs indicated an advantage of GS for model construction including the target RIL population and, in case of multi-year PS, even for model training based on data of a non-target population. In conclusion, protein content is less challenging than grain yield for phenotypic or genome-enabled improvement, and GS is promising for the simultaneous improvement of both traits.

2.
Sci Total Environ ; 598: 445-470, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28454025

ABSTRACT

Biogeochemical simulation models are important tools for describing and quantifying the contribution of agricultural systems to C sequestration and GHG source/sink status. The abundance of simulation tools developed over recent decades, however, creates a difficulty because predictions from different models show large variability. Discrepancies between the conclusions of different modelling studies are often ascribed to differences in the physical and biogeochemical processes incorporated in equations of C and N cycles and their interactions. Here we review the literature to determine the state-of-the-art in modelling agricultural (crop and grassland) systems. In order to carry out this study, we selected the range of biogeochemical models used by the CN-MIP consortium of FACCE-JPI (http://www.faccejpi.com): APSIM, CERES-EGC, DayCent, DNDC, DSSAT, EPIC, PaSim, RothC and STICS. In our analysis, these models were assessed for the quality and comprehensiveness of underlying processes related to pedo-climatic conditions and management practices, but also with respect to time and space of application, and for their accuracy in multiple contexts. Overall, it emerged that there is a possible impact of ill-defined pedo-climatic conditions in the unsatisfactory performance of the models (46.2%), followed by limitations in the algorithms simulating the effects of management practices (33.1%). The multiplicity of scales in both time and space is a fundamental feature, which explains the remaining weaknesses (i.e. 20.7%). Innovative aspects have been identified for future development of C and N models. They include the explicit representation of soil microbial biomass to drive soil organic matter turnover, the effect of N shortage on SOM decomposition, the improvements related to the production and consumption of gases and an adequate simulations of gas transport in soil. On these bases, the assessment of trends and gaps in the modelling approaches currently employed to represent biogeochemical cycles in crop and grassland systems appears an essential step for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...