Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Brain Sci ; 13(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38137126

ABSTRACT

BACKGROUND: Acetazolamide is a non-competitive inhibitor of carbonic anhydrase, an enzyme expressed in different cells of the central nervous system (CNS) and involved in the regulation of cerebral blood flow (CBF). The aim of this review was to understand the effects of acetazolamide on CBF, intracranial pressure (ICP) and brain tissue oxygenation (PbtO2) after an acute brain injury (ABI). METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA), we performed a comprehensive, computer-based, literature research on the PubMed platform to identify studies that have reported the effects on CBF, ICP, or PbtO2 of acetazolamide administered either for therapeutic or diagnostic purposes in patients with subarachnoid hemorrhage, intracerebral hemorrhage, traumatic brain injury, and hypoxic-ischemic encephalopathy. RESULTS: From the initial search, 3430 records were identified and, through data selection, 11 of them were included for the qualitative analysis. No data on the effect of acetazolamide on ICP or PbtO2 were found. Cerebral vasomotor reactivity (VMR-i.e., the changing in vascular tone due to a vasoactive substance) to acetazolamide tends to change during the evolution of ABI, with the nadir occurring during the subacute stage. Moreover, VMR reduction was correlated with clinical outcome. CONCLUSIONS: This systematic review showed that the available studies on the effects of acetazolamide on brain hemodynamics in patients with ABI are scarce. Further research is required to better understand the potential role of this drug in ABI patients.

2.
BMC Neurol ; 23(1): 228, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37312033

ABSTRACT

INTRODUCTION: Serum lactate dehydrogenase (LDH) levels are often elevated in cardiovascular diseases. Their prognostic role after subarachnoid hemorrhage (SAH) remains poorly evaluated. METHODS: This is a retrospective single-center study of patients with non-traumatic SAH admitted to the intensive care unit (ICU) of an University Hospital from 2007 to 2022. Exclusion criteria were pregnancy and incomplete medical records or follow-up data. Baseline information, clinical data, radiologic data, the occurrence of neurological complications as well as serum LDH levels during the first 14 days of ICU stay were collected. Unfavorable neurological outcome (UO) at 3 months was defined as a Glasgow Outcome Scale of 1-3. RESULTS: Five hundred and forty-seven patients were included; median serum LDH values on admission and the highest LDH values during the ICU stay were 192 [160-230] IU/L and 263 [202-351] IU/L, respectively. The highest LDH value was recorded after a median of 4 [2-10] days after ICU admission. LDH levels on admission were significantly higher in patients with UO. When compared with patients with favorable outcome (FO), patients with UO had higher serum LDH values over time. In the multivariate logistic regression model, the highest LDH value over the ICU stay (OR 1.004 [95% CI 1.002 - 1.006]) was independently associated with the occurrence of UO; the area under the receiving operator (AUROC) curve for the highest LDH value over the ICU stay showed a moderate accuracy to predict UO (AUC 0.76 [95% CI 0.72-0.80]; p < 0.001), with an optimal threshold of > 272 IU/L (69% sensitivity and 74% specificity). CONCLUSIONS: The results in this study suggest that high serum LDH levels are associated with the occurrence of UO in SAH patients. As a readily and available biomarker, serum LDH levels should be evaluated to help with the prognostication of SAH patients.


Subject(s)
Cardiovascular Diseases , Subarachnoid Hemorrhage , Female , Pregnancy , Humans , Subarachnoid Hemorrhage/complications , Retrospective Studies , Glasgow Outcome Scale , Hospitalization
3.
Biomedicines ; 10(3)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35327328

ABSTRACT

Sepsis and septic shock represent important burdens of disease around the world. Sepsis-associated neurological consequences have a great impact on patients, both in the acute phase and in the long term. Sepsis-associated encephalopathy (SAE) is a severe brain dysfunction that may contribute to long-term cognitive impairment. Its pathophysiology recognizes the following two main mechanisms: neuroinflammation and hemodynamic impairment. Clinical manifestations include different forms of altered mental status, from agitation and restlessness to delirium and deep coma. A definite diagnosis is difficult because of the absence of specific radiological and biological criteria; clinical management is restricted to the treatment of sepsis, focusing on early detection of the infection source, maintenance of hemodynamic homeostasis, and avoidance of metabolic disturbances or neurotoxic drugs.

4.
Curr Opin Crit Care ; 28(1): 51-56, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34813522

ABSTRACT

PURPOSE OF REVIEW: To review current evidence on the pathophysiology of COVID-19-related acute respiratory distress syndrome (ARDS) and on the implementation of lung protective ventilation. RECENT FINDINGS: Although multiple observations and physiological studies seem to show a different pathophysiological behaviour in COVID-19-ARDS compared with 'classical' ARDS, numerous studies on thousands of patients do not confirm these findings and COVID-19-ARDS indeed shares similar characteristics and interindividual heterogeneity with ARDS from other causes. Although still scarce, present evidence on the application of lung protective ventilation in COVID-19-ARDS shows that it is indeed consistently applied in ICUs worldwide with a possible signal towards better survival at least in one study. The levels of positive end-expiratory pressure (PEEP) usually applied in these patients are higher than in 'classical' ARDS, proposing once again the issue of PEEP personalization in hypoxemic patients. In the absence of robust evidence, careful evaluation of the patient is needed, and empiric settings should be oriented towards lower levels of PEEP. SUMMARY: According to the present evidence, a lung protective strategy based on low tidal volume and plateau pressures is indicated in COVID-19-ARDS as in ARDS from other causes; however, there are still uncertainties on the appropriate levels of PEEP.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Lung , Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Tidal Volume
5.
Trials ; 22(1): 718, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34666820

ABSTRACT

BACKGROUND: Hypercapnic exacerbations are severe complications of chronic obstructive pulmonary disease (COPD), characterized by negative impact on prognosis, quality of life and healthcare costs. The present standard of care for acute exacerbations of COPD is non-invasive ventilation; when it fails, the use of invasive mechanical ventilation is inevitable, but is associated with extremely poor prognosis. Extracorporeal circuits designed to remove CO2 (ECCO2R) may enhance the efficacy of NIV to remove CO2 and avoid the worsening of respiratory acidosis, which inevitably leads to failure of non-invasive ventilation. Although the use of ECCO2R for acute exacerbations of COPD is steadily increasing, solid evidence on its efficacy and safety is scarce, thus the need for a randomized controlled trial. METHODS: multicenter randomized controlled unblinded clinical trial including 284 (142 per arm) patients with acute hypercapnic respiratory failure caused by exacerbation of COPD, requiring respiratory support with NIV. The primary outcome is event free survival at 28 days, a composite outcome defined by survival in absence of prolonged mechanical ventilation, severe hypoxemia, septic shock and second episode of COPD exacerbation. Secondary outcomes are incidence of endotracheal intubation and tracheostomy, intensive care and hospital length-of-stay and 90-day mortality. DISCUSSION: Acute exacerbations of COPD represent a significant burden in terms of prognosis, quality of life and healthcare costs. Lack definite evidence despite increasing use of ECCO2R justifies a randomized trial to evaluate whether patients with acute hypercapnic acidosis not responsive to NIV should undergo invasive mechanical ventilation (with all serious related risks) or be treated with ECCO2R to avoid invasive ventilation but be exposed to possible adverse events of ECCO2R. Owing to its pragmatic nature, sample size and composite primary outcome, this trial aims at providing valuable answers to relevant questions for clinical treatment of acute exacerbations of COPD. TRIAL REGISTRATION: ClinicalTrials.gov , NCT04582799 . Registered 12 October 2020, .


Subject(s)
Noninvasive Ventilation , Pulmonary Disease, Chronic Obstructive , Carbon Dioxide , Humans , Hypercapnia , Multicenter Studies as Topic , Noninvasive Ventilation/adverse effects , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Quality of Life , Randomized Controlled Trials as Topic
6.
Qual Life Res ; 30(10): 2805-2817, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33977415

ABSTRACT

PURPOSE: The onset of the coronavirus disease 19 (COVID-19) pandemic in Italy induced a dramatic increase in the need for intensive care unit (ICU) beds for a large proportion of patients affected by COVID-19-related acute respiratory distress syndrome (ARDS). The aim of the present study was to describe the health-related quality of life (HRQoL) at 90 days after ICU discharge in a cohort of COVID-19 patients undergoing invasive mechanical ventilation and to compare it with an age and sex-matched sample from the general Italian and Finnish populations. Moreover, the possible associations between clinical, demographic, social factors, and HRQoL were investigated. METHODS: COVID-19 ARDS survivors from 16 participating ICUs were followed up until 90 days after ICU discharge and the HRQoL was evaluated with the 15D instrument. A parallel cohort of age and sex-matched Italian population from the same geographic areas was interviewed and a third group of matched Finnish population was extracted from the Finnish 2011 National Health survey. A linear regression analysis was performed to evaluate potential associations between the evaluated factors and HRQoL. RESULTS: 205 patients answered to the questionnaire. HRQoL of the COVID-19 ARDS patients was significantly lower than the matched populations in both physical and mental dimensions. Age, sex, number of comorbidities, ARDS class, duration of invasive mechanical ventilation, and occupational status were found to be significant determinants of the 90 days HRQoL. Clinical severity at ICU admission was poorly correlated to HRQoL. CONCLUSION: COVID-19-related ARDS survivors at 90 days after ICU discharge present a significant reduction both on physical and psychological dimensions of HRQoL measured with the 15D instrument. TRIAL REGISTRATION: NCT04411459.


Subject(s)
COVID-19 , Critical Illness , Patient Discharge , Quality of Life , Respiratory Distress Syndrome , Survivors , Aged , Female , Follow-Up Studies , Humans , Intensive Care Units , Male , Middle Aged , Quality of Life/psychology , SARS-CoV-2/pathogenicity , Severity of Illness Index
7.
Ann Intensive Care ; 11(1): 63, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33900484

ABSTRACT

BACKGROUND: Prone positioning (PP) has been used to improve oxygenation in patients affected by the SARS-CoV-2 disease (COVID-19). Several mechanisms, including lung recruitment and better lung ventilation/perfusion matching, make a relevant rational for using PP. However, not all patients maintain the oxygenation improvement after returning to supine position. Nevertheless, no evidence exists that a sustained oxygenation response after PP is associated to outcome in mechanically ventilated COVID-19 patients. We analyzed data from 191 patients affected by COVID-19-related acute respiratory distress syndrome undergoing PP for clinical reasons. Clinical history, severity scores and respiratory mechanics were analyzed. Patients were classified as responders (≥ median PaO2/FiO2 variation) or non-responders (< median PaO2/FiO2 variation) based on the PaO2/FiO2 percentage change between pre-proning and 1 to 3 h after re-supination in the first prone positioning session. Differences among the groups in physiological variables, complication rates and outcome were evaluated. A competing risk regression analysis was conducted to evaluate if PaO2/FiO2 response after the first pronation cycle was associated to liberation from mechanical ventilation. RESULTS: The median PaO2/FiO2 variation after the first PP cycle was 49 [19-100%] and no differences were found in demographics, comorbidities, ventilatory treatment and PaO2/FiO2 before PP between responders (96/191) and non-responders (95/191). Despite no differences in ICU length of stay, non-responders had a higher rate of tracheostomy (70.5% vs 47.9, P = 0.008) and mortality (53.7% vs 33.3%, P = 0.006), as compared to responders. Moreover, oxygenation response after the first PP was independently associated to liberation from mechanical ventilation at 28 days and was increasingly higher being higher the oxygenation response to PP. CONCLUSIONS: Sustained oxygenation improvement after first PP session is independently associated to improved survival and reduced duration of mechanical ventilation in critically ill COVID-19 patients.

9.
J Intensive Care ; 8: 80, 2020.
Article in English | MEDLINE | ID: mdl-33078076

ABSTRACT

BACKGROUND: A large proportion of patients with coronavirus disease 2019 (COVID-19) develop severe respiratory failure requiring admission to the intensive care unit (ICU) and about 80% of them need mechanical ventilation (MV). These patients show great complexity due to multiple organ involvement and a dynamic evolution over time; moreover, few information is available about the risk factors that may contribute to increase the time course of mechanical ventilation.The primary objective of this study is to investigate the risk factors associated with the inability to liberate COVID-19 patients from mechanical ventilation. Due to the complex evolution of the disease, we analyzed both pulmonary variables and occurrence of non-pulmonary complications during mechanical ventilation. The secondary objective of this study was the evaluation of risk factors for ICU mortality. METHODS: This multicenter prospective observational study enrolled 391 patients from fifteen COVID-19 dedicated Italian ICUs which underwent invasive mechanical ventilation for COVID-19 pneumonia. Clinical and laboratory data, ventilator parameters, occurrence of organ dysfunction, and outcome were recorded. The primary outcome measure was 28 days ventilator-free days and the liberation from MV at 28 days was studied by performing a competing risks regression model on data, according to the method of Fine and Gray; the event death was considered as a competing risk. RESULTS: Liberation from mechanical ventilation was achieved in 53.2% of the patients (208/391). Competing risks analysis, considering death as a competing event, demonstrated a decreased sub-hazard ratio for liberation from mechanical ventilation (MV) with increasing age and SOFA score at ICU admission, low values of PaO2/FiO2 ratio during the first 5 days of MV, respiratory system compliance (CRS) lower than 40 mL/cmH2O during the first 5 days of MV, need for renal replacement therapy (RRT), late-onset ventilator-associated pneumonia (VAP), and cardiovascular complications.ICU mortality during the observation period was 36.1% (141/391). Similar results were obtained by the multivariate logistic regression analysis using mortality as a dependent variable. CONCLUSIONS: Age, SOFA score at ICU admission, CRS, PaO2/FiO2, renal and cardiovascular complications, and late-onset VAP were all independent risk factors for prolonged mechanical ventilation in patients with COVID-19. TRIAL REGISTRATION: NCT04411459.

10.
Minerva Anestesiol ; 86(8): 877-883, 2020 08.
Article in English | MEDLINE | ID: mdl-32368883

ABSTRACT

Intra-abdominal hypertension (IAH) is a common complication in critically ill patients that may lead to multiorgan failure and is associated to worse outcome. Respiratory failure is among the most important consequences of IAH and it is originated by different mechanisms, such as chest wall elastance increase, functional residual capacity reduction, compression atelectasis and lung edema formation through reduction in lymphatic drainage. Many experimental studies showed that total lung capacity and functional residual capacity can be decreased by 40% during abdominal hypertension, while respiratory system and chest wall pressure-volume curves can be significantly shifted downward and to the right. Moreover, the relationship between intra-abdominal volume and airway pressure has been found to be exponential, meaning that small increases in volume can translate in dramatic increases in pressure. Clinical studies confirmed relevant atelectasis in dependent lung regions during IAH, with significant reductions in functional residual capacity and compromised oxygenation. Moreover, sepsis-related capillary leak and fluid overload may aggravate IAH and respiratory failure, thus establishing a dangerous vicious circle. Respiratory management of patients with IAH is challenging and there is no univocal answer. The measurement of intra-abdominal pressure and esophageal pressure (as a surrogate of pleural pressure) may be useful in assessing the condition and guiding mechanical ventilation. Positive end-expiratory pressure (PEEP) must be carefully selected to counteract IAH-related diaphragm displacement, but too high PEEP levels are associated with hemodynamic failure. Continuous negative extra-abdominal pressure is a promising approach, but its clinical application needs more investigation.


Subject(s)
Acute Lung Injury , Intra-Abdominal Hypertension , Respiratory Insufficiency , Humans , Intra-Abdominal Hypertension/etiology , Intra-Abdominal Hypertension/therapy , Positive-Pressure Respiration , Respiration, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL
...