Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 148(4): 1978, 2020 10.
Article in English | MEDLINE | ID: mdl-33138489

ABSTRACT

P-wave conversion to slow diffusion (Biot) modes at mesoscopic (small-scale) inhomogeneities in porous media is believed to be the most important attenuation mechanisms at seismic frequencies. This study considers three periodic thin layers saturated with gas, oil, and water, respectively, a realistic scenario in hydrocarbon reservoirs, and perform finite-element numerical simulations to obtain the wave velocities and quality factors along the direction perpendicular to layering. The results are validated by comparison to the Norris-Cavallini analytical solution, constituting a cross-check for both theory and numerical simulations. The approach is not restricted to partial saturation but also applies to relevant properties in reservoir geophysics, such as porosity and permeability heterogeneities. This paper considers two cases, namely, the same rock skeleton and different fluids, and the same fluid and different dry-rock properties. Unlike the two-layer case (two fluids), the results show two relaxation peaks and the agreement between numerical and analytical solutions is excellent.

2.
Ultrasonics ; 51(8): 878-89, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21652053

ABSTRACT

We obtain the full-wave solution for the wave propagation at the surface of anisotropic media using two spectral numerical modeling algorithms. The simulations focus on media of cubic and hexagonal symmetries, for which the physics has been reviewed and clarified in a companion paper. Even in the case of homogeneous media, the solution requires the use of numerical methods because the analytical Green's function cannot be obtained in the whole space. The algorithms proposed here allow for a general material variability and the description of arbitrary crystal symmetry at each grid point of the numerical mesh. They are based on high-order spectral approximations of the wave field for computing the spatial derivatives. We test the algorithms by comparison to the analytical solution and obtain the wave field at different faces (stress-free surfaces) of apatite, zinc and copper. Finally, we perform simulations in heterogeneous media, where no analytical solution exists in general, showing that the modeling algorithms can handle large impedance variations at the interface.

3.
Ultrasound Med Biol ; 37(6): 996-1004, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21601139

ABSTRACT

The acoustic behavior of biologic media can be described more realistically using a stress-strain relation based on fractional time derivatives of the strain, since the fractional exponent is an additional fitting parameter. We consider a generalization of the Kelvin-Voigt rheology to the case of rational orders of differentiation, the so-called Kelvin-Voigt fractional-derivative (KVFD) constitutive equation, and introduce a novel modeling method to solve the wave equation by means of the Grünwald-Letnikov approximation and the staggered Fourier pseudospectral method to compute the spatial derivatives. The algorithm can handle complex geometries and general material-property variability. We verify the results by comparison with the analytical solution obtained for wave propagation in homogeneous media. Moreover, we illustrate the use of the algorithm by simulation of wave propagation in normal and cancerous breast tissue.


Subject(s)
Elastic Modulus/physiology , Elasticity Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Models, Biological , Animals , Computer Simulation , Humans , Stress, Mechanical
4.
Ultrasonics ; 51(6): 653-60, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21420707

ABSTRACT

We present a review of wave propagation at the surface of anisotropic media (crystal symmetries). The physics for media of cubic and hexagonal symmetries has been extensively studied based on analytical and semi-analytical methods. However, some controversies regarding surfaces waves and the use of different notations for the same modes require a review of the research done and a clarification of the terminology. In a companion paper we obtain the full-wave solution for the wave propagation at the surface of media with arbitrary symmetry (including cubic and hexagonal symmetries) using two spectral numerical modeling algorithms.


Subject(s)
Ultrasonics , Anisotropy , Elasticity , Physical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...