Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 23(4): 1036-40, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23312471

ABSTRACT

From a series of N-acyl 4-(3-pyridonyl)phenylalanine derivatives of 4, the trifluoromethyl derivative 28 was identified as a potent, dual acting alpha4 integrin antagonist with activity in primate models of allergic asthma. Investigation of a series of prodrug esters led to the discovery of the morpholinopropyl derivative 48 that demonstrated good intestinal fluid stability, solubility and permeability. Compound 48 gave high blood levels of 28 when dosed orally in cynomolgus monkeys. Surprisingly, hydrolysis of 48 was rapid in liver microsomes from the pharmacological species, mouse, rat and monkey, but slow in dog and human; in vivo studies also indicated there was prolonged exposure to unchanged prodrug in dogs.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Integrins/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Animals , Dogs , Esters/blood , Esters/pharmacology , Humans , Mice , Phenylalanine/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Rats
2.
Bioorg Med Chem Lett ; 23(4): 1026-31, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23312474

ABSTRACT

N-Acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives of type 4 were designed to replace the 2,6-dichlorobenzoylamine portion of compound 1 in order to identify novel compounds with improved potency against α4-integrins. Several derivatives were identified as very potent dual-acting α4-integrin, α4ß1 and α4ß7 antagonists. Investigation of a limited number of prodrug esters led to the discovery of the ethyl ester prodrug 42, which demonstrated good intestinal fluid stability and good permeability. Despite low solubility, 42 gave acceptable blood levels of 30 when dosed orally in non-human primates. Additionally, 42 had an overall excellent profile and was selected for clinical trials. Investigation of N-acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives led to the discovery of several very potent dual-acting α4-integrin antagonists. Ethyl ester prodrug 42 advanced to human clinical trials based on the excellent intestinal fluid stability, good permeability and superior efficacy in non-human primates.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Integrins/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Pyrimidines/pharmacology , Animals , Dogs , Esters/chemistry , Esters/pharmacokinetics , Esters/pharmacology , Humans , Macaca fascicularis , Mice , Phenylalanine/pharmacokinetics , Phenylalanine/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Rats , Structure-Activity Relationship
3.
J Med Chem ; 53(9): 3502-16, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20380377

ABSTRACT

The inhibition of LTB(4) binding to and activation of G-protein-coupled receptors BLT1 and BLT2 is the premise of a treatment for several inflammatory diseases. In a lead optimization effort starting with the leukotriene B(4) (LTB(4)) receptor antagonist (2), members of a series of 3,5-diarylphenyl ethers were found to be highly potent inhibitors of LTB(4) binding to BLT1 and BLT2 receptors, with varying levels of selectivity depending on the substitution. In addition, compounds 33 and 38 from this series have good in vitro ADME properties, good oral bioavailability, and efficacy after oral delivery in guinea pig LTB(4) and nonhuman primate allergen challenge models. Further profiling in a rat non-GLP toxicity experiment provided the rationale for differentiation and selection of one compound (33) for clinical development.


Subject(s)
Drug Discovery , Leukotriene Antagonists/chemistry , Phenyl Ethers/pharmacology , Receptors, Leukotriene B4/antagonists & inhibitors , Animals , Drug Evaluation, Preclinical , Guinea Pigs , HL-60 Cells , Humans , Leukotriene Antagonists/pharmacology , Phenyl Ethers/chemistry , Primates , Protein Binding , Rats , Receptors, G-Protein-Coupled/metabolism , Receptors, Leukotriene B4/metabolism , Structure-Activity Relationship
4.
Prostaglandins Other Lipid Mediat ; 92(1-4): 33-43, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20214997

ABSTRACT

Asthma, chronic obstructive pulmonary disease (COPD) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are characterized by neutrophilic inflammation and elevated levels of leukotriene B4 (LTB4). However, the exact role of LTB4 pathways in mediating pulmonary neutrophilia and the potential therapeutic application of LTB4 receptor antagonists in these diseases remains controversial. Here we show that a novel dual BLT1 and BLT2 receptor antagonist, RO5101576, potently inhibited LTB4-evoked calcium mobilization in HL-60 cells and chemotaxis of human neutrophils. RO5101576 significantly attenuated LTB4-evoked pulmonary eosinophilia in guinea pigs. In non-human primates, RO5101576 inhibited allergen and ozone-evoked pulmonary neutrophilia, with comparable efficacy to budesonide (allergic responses). RO5101576 had no effects on LPS-evoked neutrophilia in guinea pigs and cigarette smoke-evoked neutrophilia in mice and rats. In toxicology studies RO5101576 was well-tolerated. Theses studies show differential effects of LTB4 receptor antagonism on neutrophil responses in vivo and suggest RO5101576 may represent a potential new treatment for pulmonary neutrophilia in asthma.


Subject(s)
Benzodioxoles/pharmacology , Phenylpropionates/pharmacology , Pneumonia/drug therapy , Primates , Receptors, Leukotriene B4/antagonists & inhibitors , Animals , Benzodioxoles/therapeutic use , Benzodioxoles/toxicity , Dogs , Drug-Related Side Effects and Adverse Reactions , Female , Guinea Pigs , HL-60 Cells , Humans , Hypersensitivity/complications , Lipopolysaccharides/pharmacology , Lung/drug effects , Male , Mice , Ozone/pharmacology , Phenylpropionates/therapeutic use , Phenylpropionates/toxicity , Pneumonia/chemically induced , Pneumonia/complications , Pneumonia/metabolism , Rats , Receptors, Leukotriene B4/metabolism , Smoking/adverse effects , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...