Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
2.
Mar Drugs ; 21(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36827151

ABSTRACT

Marine cyanobacteria are a rich source of bio-active metabolites that have been utilized as leads for drug discovery and pharmacological tools for basic science research. Here, we describe the re-isolation of a well-known metabolite, barbamide, from Curaçao on three different occasions and the characterization of barbamide's biological interactions with targets of the mammalian nervous system. Barbamide was originally discovered as a molluscicidal agent from a filamentous marine cyanobacterium. In our hands, we found little evidence of toxicity against mammalian cell cultures. However, barbamide showed several affinities when screened for binding affinity for a panel of 45 receptors and transporters known to be involved in nociception and sensory neuron activity. We found high levels of binding affinity for the dopamine transporter, the kappa opioid receptor, and the sigma receptors (sigma-1 and sigma-2 also known as transmembrane protein 97; TMEM97). We tested barbamide in vitro in isolated sensory neurons from female mice to explore its functional impact on calcium flux in these cells. Barbamide by itself had no observable impact on calcium flux. However, barbamide enhanced the effect of the TRPV1 agonist capsaicin and enhanced store-operated calcium entry (SOCE) responses after depletion of intracellular calcium. Overall, these results demonstrate the biological potential of barbamide at sensory neurons with implications for future drug development projects surrounding this molecule.


Subject(s)
Calcium , Sensory Receptor Cells , Female , Mice , Animals , Calcium/metabolism , Thiazoles/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Signaling , Mammals/metabolism
3.
Front Biosci (Landmark Ed) ; 27(5): 167, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35638434

ABSTRACT

The mitogen-activated protein kinase (MAPK) pathways are ubiquitous in cellular signaling and are essential for proper biological functions. Disruptions in this signaling axis can lead to diseases such as the development of cancer. In this review, we discuss members of the MAP3K family and correlate their mRNA expression levels to patient survival outcomes in different cancers. Furthermore, we highlight the importance of studying the MAP3K family due to their important roles in the larger, overall MAPK pathway, relationships with cancer progression, and the understudied status of these kinases.


Subject(s)
MAP Kinase Signaling System , Neoplasms , Humans , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Neoplasms/genetics , Phosphorylation , Signal Transduction/genetics
4.
Oncoscience ; 8: 64-71, 2021.
Article in English | MEDLINE | ID: mdl-34026925

ABSTRACT

Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited targeted therapeutic options. A defining feature of TNBC is the propensity to metastasize and acquire resistance to cytotoxic agents. Mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK) signaling pathways have integral roles in cancer development and progression. While MEK5/ERK5 signaling drives mesenchymal and migratory cell phenotypes in breast cancer, the specific mechanisms underlying these actions remain under-characterized. To elucidate the mechanisms through which MEK5 regulates the mesenchymal and migratory phenotype, we generated stably transfected constitutively active MEK5 (MEK5-ca) TNBC cells. Downstream signaling pathways and candidate targets of MEK5-ca cells were based on RNA sequencing and confirmed using qPCR and Western blot analyses. MEK5 activation drove a mesenchymal cell phenotype independent of cell proliferation effects. Transwell migration assays demonstrated MEK5 activation significantly increased breast cancer cell migration. In this study, we provide supporting evidence that MEK5 functions through FRA-1 to regulate the mesenchymal and migratory phenotype in TNBC.

5.
J Cell Biochem ; 122(8): 835-850, 2021 08.
Article in English | MEDLINE | ID: mdl-33876843

ABSTRACT

Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT) when cells adopt a motile and invasive phenotype through loss of epithelial markers (CDH1), and acquisition of mesenchymal markers (VIM, CDH2). Although MAPK/ERK1/2 kinase inhibitors (MEKi) are useful antitumor agents in a clinical setting, including the Food and Drug Administration (FDA)-approved MEK1,2 dual inhibitors cobimetinib and trametinib, there are limitations to their clinical utility, primarily adaptation of the BRAF pathway and ocular toxicities. The MEK5 (HGNC: MAP2K5) pathway has important roles in metastatic progression of various cancer types, including those of the prostate, colon, bone and breast, and elevated levels of ERK5 expression in breast carcinomas are linked to a worse prognoses in TNBC patients. The purpose of this study is to explore MEK5 regulation of the EMT axis and to evaluate a novel pan-MEK inhibitor on clinically aggressive TNBC cells. Our results show a distinction between the MEK1/2 and MEK5 cascades in maintenance of the mesenchymal phenotype, suggesting that the MEK5 pathway may be necessary and sufficient in EMT regulation while MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Furthermore, additive effects on MET induction are evident through the inhibition of both MEK1/2 and MEK5. Taken together, these data demonstrate the need for a better understanding of the individual roles of MEK1/2 and MEK5 signaling in breast cancer and provide a rationale for the combined targeting of these pathways to circumvent compensatory signaling and subsequent therapeutic resistance.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , MAP Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Proto-Oncogene Proteins c-fos/biosynthesis , Triple Negative Breast Neoplasms/metabolism , Female , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/genetics , MAP Kinase Kinase 5/antagonists & inhibitors , MAP Kinase Kinase 5/genetics , MCF-7 Cells , Proto-Oncogene Proteins c-fos/genetics , Triple Negative Breast Neoplasms/genetics
6.
Transl Oncol ; 14(6): 101046, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33761370

ABSTRACT

The epithelial to mesenchymal transition (EMT) is characterized by a loss of cell polarity, a decrease in the epithelial cell marker E-cadherin, and an increase in mesenchymal markers including the zinc-finger E-box binding homeobox (ZEB1). The EMT is also associated with an increase in cell migration and anchorage-independent growth. Induction of a reversal of the EMT, a mesenchymal to epithelial transition (MET), is an emerging strategy being explored to attenuate the metastatic potential of aggressive cancer types, such as triple-negative breast cancers (TNBCs) and tamoxifen-resistant (TAMR) ER-positive breast cancers, which have a mesenchymal phenotype. Patients with these aggressive cancers have poor prognoses, quick relapse, and resistance to most chemotherapeutic drugs. Overexpression of extracellular signal-regulated kinase (ERK) 1/2 and ERK5 is associated with poor patient survival in breast cancer. Moreover, TNBC and tamoxifen resistant cancers are unresponsive to most targeted clinical therapies and there is a dire need for alternative therapies. In the current study, we found that MAPK3, MAPK1, and MAPK7 gene expression correlated with EMT markers and poor overall survival in breast cancer patients using publicly available datasets. The effect of ERK1/2 and ERK5 pathway inhibition on MET was evaluated in MDA-MB-231, BT-549 TNBC cells, and tamoxifen-resistant MCF-7 breast cancer cells. Moreover, TU-BcX-4IC patient-derived primary TNBC cells were included to enhance the translational relevance of our study. We evaluated the effect of pharmacological inhibitors and lentivirus-induced activation or inhibition of the MEK1/2-ERK1/2 and MEK5-ERK5 pathways on cell morphology, E-cadherin, vimentin and ZEB1 expression. Additionally, the effects of pharmacological inhibition of trametinib and XMD8-92 on nuclear localization of ERK1/2 and ERK5, cell migration, proliferation, and spheroid formation were evaluated. Novel compounds that target the MEK1/2 and MEK5 pathways were used in combination with the AKT inhibitor ipatasertib to understand cell-specific responses to kinase inhibition. The results from this study will aid in the design of innovative therapeutic strategies that target cancer metastases.

7.
Biomolecules ; 11(2)2021 01 29.
Article in English | MEDLINE | ID: mdl-33572742

ABSTRACT

Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-ß (TGF-ß), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and ß-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.


Subject(s)
Epithelial-Mesenchymal Transition , Mitogen-Activated Protein Kinase 7/metabolism , Mutation , Neoplasms/metabolism , Animals , Cell Adhesion , Cytoskeleton/metabolism , Disease Progression , Extracellular Matrix/metabolism , Humans , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplastic Stem Cells/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Tumor Microenvironment , Tumor Necrosis Factor-alpha/metabolism
8.
Front Oncol ; 10: 1164, 2020.
Article in English | MEDLINE | ID: mdl-32850332

ABSTRACT

Conventional mitogen-activated protein kinase (MAPK) family members regulate diverse cellular processes involved in tumor initiation and progression, yet the role of ERK5 in cancer biology is not fully understood. Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. ERK5 signaling contributes to drug resistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT). More recently a role for ERK5 in regulation of the extracellular matrix (ECM) has been proposed, and here we investigated the necessity of ERK5 in TNBC tumor formation. Depletion of ERK5 expression using the CRISPR/Cas9 system in MDA-MB-231 and Hs-578T cells resulted in loss of mesenchymal features, as observed through gene expression profile and cell morphology, and suppressed TNBC cell migration. In vivo xenograft experiments revealed ERK5 knockout disrupted tumor growth kinetics, which was restored using high concentration Matrigel™ and ERK5-ko reduced expression of the angiogenesis marker CD31. These findings implicated a role for ERK5 in the extracellular matrix (ECM) and matrix integrity. RNA-sequencing analyses demonstrated downregulation of matrix-associated genes, integrins, and pro-angiogenic factors in ERK5-ko cells. Tissue decellularization combined with cryo-SEM and interrogation of biomechanical properties revealed that ERK5-ko resulted in loss of key ECM fiber alignment and mechanosensing capabilities in breast cancer xenografts compared to parental wild-type cells. In this study, we identified a novel role for ERK5 in tumor growth kinetics through modulation of the ECM and angiogenesis axis in breast cancer.

9.
J Cell Biochem ; 121(2): 1156-1168, 2020 02.
Article in English | MEDLINE | ID: mdl-31464004

ABSTRACT

Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs.


Subject(s)
Cell Survival/drug effects , MAP Kinase Kinase 5/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/metabolism , Apoptosis/drug effects , Benzodiazepinones/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Synergism , Female , Humans , MAP Kinase Kinase 5/antagonists & inhibitors , Mitogen-Activated Protein Kinase 7/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyridones/pharmacology , Pyrimidines/pharmacology , Pyrimidinones/pharmacology
10.
Front Oncol ; 9: 672, 2019.
Article in English | MEDLINE | ID: mdl-31417863

ABSTRACT

Epithelial to mesenchymal transition (EMT) is a cellular program that converts non-motile epithelial cells into invasive mesenchymal cells. EMT is implicated in cancer metastasis, chemo-resistance, cancer progression, and generation of cancer stem cells (CSCs). Inducing mesenchymal to epithelial transition (MET), the reverse phenomenon of EMT, is proposed as a novel strategy to target triple negative and tamoxifen-resistant breast cancer. Triple negative breast cancer (TNBC) is characterized by the loss of hormone receptors, a highly invasive mesenchymal phenotype, and a lack of targeted therapy. Estrogen receptor-positive breast cancer can be targeted by tamoxifen, an ER antagonist. However, these cells undergo EMT over the course of treatment and develop resistance. Thus, there is an urgent need to develop therapeutic interventions to target these aggressive cancers. In this study, we examined the role of novel diphenylamine analogs in converting the mesenchymal phenotype of MDA-MB-231 TNBC cells to a lesser aggressive epithelial phenotype. Using analog-based drug design, a series of diphenylamine analogs were synthesized and initially evaluated for their effect on E-cadherin protein expression and changes incell morphology, which was quantified by measuring the spindle index (SI) value. Selected compound 1 from this series increases the expression of E-cadherin, a primary marker for epithelial cells, and decreases the mesenchymal markers SOX2, ZEB1, Snail, and vimentin. The increase in epithelial markers and the decrease in mesenchymal markers are consistent with a phenotypic switch from spindle-like morphology to cobblestone-like morphology. Furthermore, Compound 1 decreases spheroid viability, cell migration, and cell proliferation in triple negative BT-549 and tamoxifen-resistant MCF-7 breast cancer cells.

11.
Am J Pharm Educ ; 82(7): 7147, 2018 09.
Article in English | MEDLINE | ID: mdl-30323399

ABSTRACT

EXECUTIVE SUMMARY The 2017-2018 Research and Graduate Affairs Committee (RGAC) was given three charges aimed at helping academic pharmacy address barriers that must be overcome by both students and schools to attract, retain, and support the development of a diverse, well-rounded, and successful graduate student population. These charges were (1) identifying teaching methodologies, tools and opportunities that graduate programs can introduce into curriculum to overcome barriers to success of today's and tomorrow's learners; (2) developing a strategy for achieving member support of the 2016-2017 recommended graduate competencies by identifying gaps in and existing examples of courses or opportunities that achieve competency-based pharmacy graduate education; and (3) identifying potential strategies to address identified barriers to pursuing graduate education, especially among under-represented student populations. This report describes attitudes toward and opportunities related to competency-based education in graduation education in colleges and schools of pharmacy, identifies types of tools schools could use to enhance training towards the competency framework developed by the 2016-2017 RGAC, particularly with regards to the so-called power skills, and outlines a role for AACP in facilitating this training. This report also considers a number of barriers, both perceived and real, that potential students encounter when considering graduate training and suggests strategies to understand the impact of and mitigate these barriers. To strengthen competency-based graduate education, the RGAC puts forth two recommendations that AACP develop a toolkit supporting the training of power skills and that AACP should develop or curate programs or tools to support the use of individual development plans (IDPs). The RGAC also puts forth a suggestion to schools that IDPs be implemented for all students. In considering the barriers to pursuing graduate education, the Committee proposes one policy statement that AACP supports the training and development of an increasingly diverse population of researchers at pharmacy schools through active efforts to promote M.S. and Ph.D. education along with Pharm.D. education. Additionally, the Committee provides recommendations that AACP should expand its efforts in career tracking of graduate students to include collection and/or analysis of data that could inform the Academy's understanding of barriers to pursuing graduate education in pharmacy schools, the AACP Office of Institutional Research and Effectiveness should expand upon graduate program data described in the annual Profile of Pharmacy Students report, and finally that AACP should include graduate programs in efforts to increase diversity of students at pharmacy schools.


Subject(s)
Education, Pharmacy, Graduate/methods , Annual Reports as Topic , Competency-Based Education/methods , Curriculum , Humans , Learning , Pharmaceutical Services , Pharmacy/methods , Schools, Pharmacy , Students, Pharmacy
13.
Horm Cancer ; 9(4): 240-253, 2018 08.
Article in English | MEDLINE | ID: mdl-29687205

ABSTRACT

This retrospective case series study, using data obtained through questionnaires and histopathological diagnoses from 656 patients enrolled in the Department of Defense (DoD) Clinical Breast Care Project (CBCP), evaluated associations between hormonal contraceptive use and breast cancer pathology including benign breast pathologies. Three combination hormonal contraceptive agents (COCs) Lo Ovral (LO), Ortho Novum (ON), and Ortho Tri-Cyclen (OTC) were evaluated as they represented the most commonly used hormonal contraceptives in our cohort. The results of this study suggest that the ever use of LO + ON + OTC does not influence the overall incidence of benign breast condition or malignant disease compared to other COCs; however, patients that have used OTC had an association with a diagnosis of benign or luminal A pathologies whereas ON was associated with a diagnosis of benign and DCIS; LO showed no association with any diagnosis-benign or malignant. Patients that have used LO or ON were more likely to be diagnosed with breast cancer at age ≥ 40 years whereas patients that had ever used OTC were likely to be diagnosed before the age of 40. Caucasians were less likely to have used OTC and more likely to have used ON; however, use of either hormonal agent positively correlated with premenopausal status at diagnosis and having a benign condition. Age at diagnosis, ethnicity, BMI, family history, menstruation status, and duration of use were all independent predictors of different histopathological subtypes. We conclude that patient-specific variables should be considered when deciding on which type of hormonal contraceptive to use to minimize the risk of developing breast cancer or a breast-related pathology.


Subject(s)
Breast Neoplasms/epidemiology , Contraceptives, Oral, Combined/adverse effects , Adult , Female , Humans , Incidence , Middle Aged , Retrospective Studies
14.
J Nutr Biochem ; 54: 77-86, 2018 04.
Article in English | MEDLINE | ID: mdl-29268122

ABSTRACT

Age-related declines in motor function may be due, in part, to an increase in oxidative stress in the aging brain leading to dopamine (DA) neuronal cell death. In this study, we examined the neuroprotective effects of natural antioxidants resveratrol and pinostilbene against age-related DAergic cell death and motor dysfunction using SH-SY5Y neuroblastoma cells and young, middle-aged, and old male C57BL/6 mice. Resveratrol and pinostilbene protected SH-SY5Y cells from a DA-induced decrease in cell viability. Dietary supplementation with resveratrol and pinostilbene inhibited the decline of motor function observed with age. While DA and its metabolites (DOPAC and HVA), dopamine transporter, and tyrosine hydroxylase levels remain unchanged during aging or treatment, resveratrol and pinostilbene increased ERK1/2 activation in vitro and in vivo in an age-dependent manner. Inhibition of ERK1/2 in SH-SY5Y cells decreased the protective effects of both compounds. These data suggest that resveratrol and pinostilbene alleviate age-related motor decline via the promotion of DA neuronal survival and activation of the ERK1/2 pathways.


Subject(s)
Aging/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Resveratrol/pharmacology , Stilbenes/pharmacology , Aging/physiology , Animals , Cell Line , Dopamine/metabolism , Dopamine/toxicity , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Humans , Male , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Motor Activity/drug effects , Neurons/metabolism , Substantia Nigra/drug effects , Substantia Nigra/metabolism
15.
Arch Toxicol ; 92(2): 669-677, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28980048

ABSTRACT

Age-related motor deficits, such as loss of balance and coordination, are caused, in part, by loss of dopaminergic neurons. Oxidative stress is known to play a role in this neuronal loss. Resveratrol, a natural antioxidant with anticancer and anti-inflammatory potential, has been shown to protect dopaminergic-like cells (SH-SY5Y) against oxidative stress. However, the low bioavailability of resveratrol makes it worthwhile to explore newer compounds with similar properties. Piceid (RV8), an analog of resveratrol, has greater bioavailability than resveratrol, and our studies found that piceid (10, 20, 30 µM) protects SH-SY5Y cells against oxidative stress. Our investigations also found that the neuroprotection afforded by piceid was decreased when the MAP kinases, ERK1/2 and ERK5, were independently inhibited. Since oxidative stress is considered a master operator of apoptosis, our study also scrutinized dopamine-induced apoptosis and whether caspase-3/7 and Bcl-2 are involved, following piceid pretreatment followed by dopamine exposure. Our findings suggested that piceid pretreatment inhibited the dopamine-induced increase in caspase-3/7 activity and dopamine-induced loss of Bcl-2 expression. Overall, these findings suggest that the neuroprotective effects of piceid are mediated via the activation of ERK1/2, ERK5, and inhibition of apoptosis caused by oxidative stress.


Subject(s)
Dopaminergic Neurons/drug effects , Glucosides/pharmacology , Neuroprotective Agents/pharmacology , Resveratrol/analogs & derivatives , Stilbenes/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , Dopamine/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism
16.
Am J Pharm Educ ; 81(8): S11, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29200459

ABSTRACT

Graduate education in the pharmaceutical sciences is a cornerstone of research within pharmacy schools. Pharmaceutical scientists are critical contributors to addressing the challenges of new drug discovery, delivery, and optimal care in order to ensure improved therapeutic outcomes in populations of patients. The American Association of Colleges of Pharmacy (AACP) charged the 2016-2017 Research and Graduate Affairs Committee (RGAC) to define the competencies necessary for graduate education in the pharmaceutical sciences (Charge 1), recommend collaborative curricular development across schools of pharmacy (Charge 2), recommend AACP programing for graduate education (Charge 3), and provide guidance on emerging areas for innovation in graduate education (Charge 4). With respect to Charges 1 and 2, the RGAC committee developed six domains of core competencies for graduate education in the pharmaceutical sciences as well as recommendations for shared programming. For Charge 3, the committee made 3 specific programming recommendations that include AACP sponsored regional research symposia, a professional development forum at the AACP INterim Meeting, and the addition of a graduate research and education poster session at the AACP Annual Meeting. For Charge 4, the committee recommended that AACP develop a standing committee of graduate program deans and directors to provide guidance to member schools in support of graduate program representation at AACP meetings, develop skills for interprofessional teamwork and augment research through integration of Pharm.D., Ph.D., postdoctoral associates, resident, and fellow experiences. Two proposed policy statements by the committee are that AACP believes core competencies are essential components of graduate education and AACP supports the inclusion of research and graduate education focuses in its portfolio of meetings and programs.


Subject(s)
Competency-Based Education , Education, Pharmacy, Graduate/organization & administration , Pharmacy Research/education , Students, Pharmacy , Clinical Competence , Curriculum , Educational Measurement , Humans , Schools, Pharmacy , United States
17.
Neurobiol Aging ; 56: 100-107, 2017 08.
Article in English | MEDLINE | ID: mdl-28526294

ABSTRACT

Aging populations are more sensitive to noxious stimuli as a result of altered somatosensory systems. In these experiments, we examined pain-like behaviors in young, middle-aged, and old mice during peripheral inflammation to determine if the same sensitivity exists in preclinical animal models. Immediately following injury, middle-aged and old mice exhibited more spontaneous pain-like behaviors than young mice, matching pain prevalence in clinical populations. Middle-aged and old mice also developed persistent mechanical hypersensitivity in the injured paw. Furthermore, old mice developed mechanical hypersensitivity in the noninjured paw suggesting age-dependent changes in central nociceptive systems. To address this end, pain-related protein expression was examined in the central nucleus of the amygdala, a limbic brain region that modulates somatic pain. Following injury, increased phosphorylation of extracellular signal-regulated kinase 1, a protein with known nociceptive functions, was observed in the right central nucleus of the amygdala of old mice and not middle-aged or young animals. These findings suggest that age-dependent changes in supraspinal nociceptive systems may account for increased pain-like behaviors in aging populations.


Subject(s)
Aging/metabolism , Aging/physiology , Central Amygdaloid Nucleus/enzymology , Mitogen-Activated Protein Kinase 3/metabolism , Nociception/physiology , Pain , Animals , Disease Models, Animal , Male , Mice, Inbred C57BL , Phosphorylation , Physical Stimulation , Receptor, Metabotropic Glutamate 5/metabolism , Somatosensory Cortex/physiopathology
18.
Cancer Lett ; 392: 51-59, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28153789

ABSTRACT

Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MEK5 pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5/ERK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents.


Subject(s)
MAP Kinase Kinase 5/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Neoplasms/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction , Animals , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Differentiation , Cell Proliferation , Drug Resistance, Neoplasm , Humans , MAP Kinase Kinase 5/antagonists & inhibitors , MAP Kinase Kinase 5/genetics , Molecular Targeted Therapy , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/genetics , Signal Transduction/drug effects
19.
AAPS PharmSciTech ; 18(3): 904-912, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27380436

ABSTRACT

Epithelial flux and permeability across bovine olfactory tissue were compared when levodopa (L-DOPA) was loaded in different physical states. Aqueous solution of L-DOPA was prepared in Krebs-Ringer buffer (KRB), at a concentration (0.75 mg/mL) verified to be less than the saturation solubility at both 25 and 37°C. Sodium metabisulfite was added to solution to minimize L-DOPA oxidation; chemical stability of aqueous L-DOPA was evaluated using HPLC-UV. Solid-state characterization of unprocessed, dry, crystalline L-DOPA powder was performed using TGA, DSC, PXRD, and optical microscopy to ensure that preparation of L-DOPA microparticles used for diffusion experiments did not elicit a phase change. Measurements of in vitro flux were made for all preparations, using freshly excised bovine olfactory mucosal membrane. Samples obtained from transport studies were analyzed by HPLC-UV. Tissue viability was measured before and after experiments using transdermal epithelial electrical resistance (TEER). The average steady-state flux (J ss ) of L-DOPA from solid microparticles directly deposited on nasal epithelial tissue was 6.08 ± 0.69 µg/cm2/min, approximately three times greater than the J ss measured for L-DOPA from solution (2.13 ± 0.97 µg/cm2/min). The average apparent permeability coefficient (P app ) of L-DOPA was calculated to be 4.73 × 10-5 cm/s. These findings suggest that nasal delivery of L-DOPA by administration of solid microparticles not only benefits from improved chemical and microbiological stability by avoiding the use of aqueous formulation vehicle but also does not compromise cumulative mass transport across the olfactory membrane.


Subject(s)
Levodopa/chemistry , Levodopa/metabolism , Olfactory Mucosa/metabolism , Animals , Buffers , Cattle , Chemistry, Pharmaceutical/methods , Dihydroxyphenylalanine/chemistry , Epithelium/metabolism , Permeability , Pharmaceutical Solutions/chemistry , Pharmaceutical Solutions/metabolism , Powders/chemistry , Solubility , Sulfites/chemistry
20.
Ther Deliv ; 7(12): 795-808, 2016 12.
Article in English | MEDLINE | ID: mdl-27834615

ABSTRACT

AIM: Delivery of the natural anti-inflammatory compound resveratrol with nanoemulsions can dramatically improve its tissue targeting, bioavailability and efficacy. Current assessment of resveratrol delivery efficacy is limited to indirect pharmacological measures. Molecular imaging solves this problem. Results/methodology: Nanoemulsions containing two complementary imaging agents, near-infrared dye and perfluoropolyether (PFPE), were developed and evaluated. Nanoemulsion effects on macrophage uptake, toxicity and NO production were also evaluated. The presence of PFPE did not affect nanoemulsion size, zeta potential, colloidal stability, drug loading or drug release. CONCLUSION: PFPE nanoemulsions can be used in future studies to evaluate nanoemulsion biodistribution without interfering with resveratrol delivery and pharmacological outcomes. Developed nanoemulsions show promise as a versatile treatment strategy for cancer and other inflammatory diseases. [Formula: see text].


Subject(s)
Molecular Imaging , Stilbenes , Biological Availability , Emulsions , Resveratrol , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...