Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 7209, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31076577

ABSTRACT

Newcastle disease virus (NDV) is a threat to the global poultry industry, but particularly for smallholder farmers in low- and middle-income countries. Previous reports suggest that some breeds of chickens are less susceptible to NDV infection, however, the mechanisms contributing to this are unknown. We here examined the comparative transcriptional responses of innate immune genes to NDV infection in inbred sublines of the Fayoumi and Leghorn breeds known to differ in their relative susceptibility to infection as well as at the microchromosome bearing the major histocompatability complex (MHC) locus. The analysis identified a set of five core genes, Mx1, IRF1, IRF7, STAT1, and SOCS1, that are up-regulated regardless of subline. Several genes were differentially expressed in a breed- or subline-dependent manner. The breed-dependent response involved TLR3, NOS2, LITAF, and IFIH1 in the Fayoumi versus IL8, CAMP, and CCL4 in the Leghorn. Further analysis identified subline-dependent differences in the pro-inflammatory response within the Fayoumi breed that are likely influenced by the MHC. These results have identified conserved, breed-dependent, and subline-dependent innate immune responses to NDV infection in chickens, and provide a strong framework for the future characterization of the specific roles of genes and pathways that influence the susceptibility of chickens to NDV infection.


Subject(s)
Immunity, Innate , Newcastle Disease/genetics , Newcastle disease virus/immunology , Poultry Diseases/virology , Animals , Chick Embryo , Disease Resistance , Gene Expression Regulation , Gene Regulatory Networks , Newcastle Disease/immunology , Poultry Diseases/genetics , Poultry Diseases/immunology , Selective Breeding , Up-Regulation
2.
Front Genet ; 9: 61, 2018.
Article in English | MEDLINE | ID: mdl-29535762

ABSTRACT

Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...