Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Skeletal Radiol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829525

ABSTRACT

OBJECTIVE: The purpose of this study is to analyze changes in the utilization of MRA of the hip and shoulder at a large tertiary care academic medical center during a period of significant technological advancements over the last 20 years. MATERIALS AND METHODS: This retrospective cross-sectional analysis identified MRA of the hip and shoulder performed at our institution over a 20-year period (2/2003-2/2023) in relation to the total number of MR hip and shoulder examinations during the same period. Patient characteristics and referring provider demographic information were extracted. Descriptive statistics and trend analysis were performed. RESULTS: The total number of MRIs of the hip and shoulder increased overall, with small dips in 2020 and 2022. MRA of the hip increased significantly over the first 10 years of the study period (p = 0.0005), while MRA of the shoulder did not change significantly (p = 0.33). The proportion of both MRA of the hip and shoulder declined over the last 10 years (hip, p = 0.0056; shoulder, p = 0.0017). Over the same period, there was significant increase in the proportion of examinations performed at 3 Tesla versus 1.5 (p < 0.0001). CONCLUSION: Overall, there was a downward trend in MR shoulder and hip arthrogram utilization in the second half of this 20-year study period. However, utilization varied somewhat by referring specialties and credentials. These changes are likely reflective of both improvements in image quality and evolving practice recommendations. Awareness of such trends may be valuable in ensuring appropriate patient care, as well as for anticipating the needs of a musculoskeletal radiology practice.

2.
ACG Case Rep J ; 11(5): e01354, 2024 May.
Article in English | MEDLINE | ID: mdl-38706451

ABSTRACT

Fenbendazole is an anthelmintic agent approved for veterinary applications. Even though it is not approved by the US Food and Drug Administration for human use, such use appears to be increasing due to the popularization of fenbendazole's potential anticancer effects by social media. We describe the first case of histologically confirmed severe drug-induced liver injury, hepatocellular pattern, associated with the self-administration of fenbendazole in a 67-year-old woman who presented with 2 weeks of jaundice. Liver function tests normalized in 3 months after the cessation of fenbendazole.

3.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619879

ABSTRACT

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Subject(s)
Environmental Pollutants , Fatty Liver , Liver Diseases, Alcoholic , Polychlorinated Biphenyls , Male , Mice , Animals , Multiomics , Mice, Inbred C57BL , Ethanol/toxicity , Ethanol/metabolism , Liver/metabolism , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Zinc/metabolism , Tyrosine/metabolism
4.
Environ Toxicol Pharmacol ; 107: 104430, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552755

ABSTRACT

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to increase due in part to the obesity epidemic and to environmental exposures to metabolism disrupting chemicals. A single gavage exposure of male mice to Aroclor 1260 (Ar1260), an environmentally relevant mixture of non-dioxin-like polychlorinated biphenyls (PCBs), resulted in steatohepatitis and altered RNA modifications in selenocysteine tRNA 34 weeks post-exposure. Unbiased approaches identified the liver proteome, selenoproteins, and levels of 25 metals. Ar1260 altered the abundance of 128 proteins. Enrichment analysis of the liver Ar1260 proteome included glutathione metabolism and translation of selenoproteins. Hepatic glutathione peroxidase 4 (GPX4) and Selenoprotein O (SELENOO) were increased and Selenoprotein F (SELENOF), Selenoprotein S (SELENOS), Selenium binding protein 2 (SELENBP2) were decreased with Ar1260 exposure. Increased copper, selenium (Se), and zinc and reduced iron levels were detected. These data demonstrate that Ar1260 exposure alters the (seleno)proteome, Se, and metals in MASLD-associated pathways.


Subject(s)
Aroclors , Fatty Liver , Selenium , Male , Mice , Animals , Proteome/metabolism , Glutathione Peroxidase/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Liver/metabolism
5.
Am J Med Sci ; 367(5): 310-322, 2024 May.
Article in English | MEDLINE | ID: mdl-38307172

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease is a growing problem in the United States, contributing to a range of liver disease as well as cardiovascular disease. ALT is the most widely used liver chemistry for NAFLD evaluation. We hypothesized that the normal range many laboratories use was too high, missing many patients with clinically important steatosis and/or fibrosis. METHODS: This study utilized 2017-2018 NHANES data including 9254 participants. We compared four different upper limits of normal for ALT with specific measurements of steatosis and liver stiffness as determined by liver elastography with FibroScan®. Liver stiffness was further characterized as showing any fibrosis or advanced fibrosis. After exclusions, our final pool was 4184 for liver stiffness measurement and 4183 for steatosis grade as measured by Controlled Attenuation Parameter (CAP). Using these variables, we performed logistic regression between ALT and CAP, and ALT and fibrosis/advanced fibrosis, and did a Receiver Operating Characteristic curve. RESULTS: Based on three of the most widely used cut off values for ALT, we found that ALT does not reliably rule out NAFLD in over 50% of cases. It also missed 45.9-64.2% of patients with liver fibrosis. CONCLUSIONS: Our study revealed that ALT is an inaccurate marker for NAFLD as measured by FibroScan® with CAP greater than or equal to 300 dB/m. Accuracy improved specific risk factors were considered. These data also showed that ALT was a poor marker for liver fibrosis. We conclude that there is no single ALT level that accurately predicts hepatic steatosis or fibrosis.


Subject(s)
Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Adult , Humans , United States/epidemiology , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Elasticity Imaging Techniques/adverse effects , Nutrition Surveys , Vibration , Prospective Studies , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/etiology , Liver/diagnostic imaging , Fibrosis
6.
Toxicol Sci ; 198(2): 210-220, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38291899

ABSTRACT

Microplastics (MP) derived from the weathering of polymers, or synthesized in this size range, have become widespread environmental contaminants and have found their way into water supplies and the food chain. Despite this awareness, little is known about the health consequences of MP ingestion. We have previously shown that the consumption of polystyrene (PS) beads was associated with intestinal dysbiosis and diabetes and obesity in mice. To further evaluate the systemic metabolic effects of PS on the gut-liver-adipose tissue axis, we supplied C57BL/6J mice with normal water or that containing 2 sizes of PS beads (0.5 and 5 µm) at a concentration of 1 µg/ml. After 13 weeks, we evaluated indices of metabolism and liver function. As observed previously, mice drinking the PS-containing water had a potentiated weight gain and adipose expansion. Here we found that this was associated with an increased abundance of adipose F4/80+ macrophages. These exposures did not cause nonalcoholic fatty liver disease but were associated with decreased liver:body weight ratios and an enrichment in hepatic farnesoid X receptor and liver X receptor signaling. PS also increased hepatic cholesterol and altered both hepatic and cecal bile acids. Mice consuming PS beads and treated with the berry anthocyanin, delphinidin, demonstrated an attenuated weight gain compared with those mice receiving a control intervention and also exhibited a downregulation of cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor (PPAR) signaling pathways. This study highlights the obesogenic role of PS in perturbing the gut-liver-adipose axis and altering nuclear receptor signaling and intermediary metabolism. Dietary interventions may limit the adverse metabolic effects of PS consumption.


Subject(s)
Non-alcoholic Fatty Liver Disease , Plastics , Animals , Mice , Plastics/metabolism , Plastics/pharmacology , Polystyrenes/toxicity , Polystyrenes/metabolism , Microplastics/metabolism , Microplastics/pharmacology , Mice, Inbred C57BL , Liver , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/chemically induced , Obesity/metabolism , Weight Gain
7.
Life Sci ; 336: 122289, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38007143

ABSTRACT

Pulmonary artery hypertension (PAH) is characterized by vasoconstriction and vascular remodeling resulting in both increased pulmonary vascular resistance (PVR) and pulmonary artery pressure (PAP). The chronic and high-pressure stress experienced by endothelial cells can give rise to inflammation, oxidative stress, and infiltration by immune cells. However, there is no clearly defined mechanism for PAH and available treatment options only provide limited symptomatic relief. Due to the far-reaching effects of metal exposures, the interaction between metals and the pulmonary vasculature is of particular interest. This review will briefly introduce the pathophysiology of PAH and then focus on the potential roles of metals, including essential and non-essential metals in the pathogenic process in the pulmonary arteries and right heart, which may be linked to PAH. Based on available data from human studies of occupational or environmental metal exposure, including lead, antimony, iron, and copper, the hypothesis of metals contributing to the pathogenesis of PAH is proposed as potential risk factors and underlying mechanisms for PAH. We propose that metals may initiate or exacerbate the pathogenesis of PAH, by providing potential mechanism by which metals interact with hypoxia-inducible factor and tumor suppressor p53 to modulate their downstream cellular proliferation pathways. These need further investigation. Additionally, we present future research directions on roles of metals in PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Artery , Endothelial Cells/metabolism , Pulmonary Arterial Hypertension/metabolism , Vascular Remodeling
8.
Am J Gastroenterol ; 119(1): 107-115, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37011138

ABSTRACT

INTRODUCTION: This study is to evaluate the safety and pharmacokinetics (PK) of larsucosterol (DUR-928 or 25HC3S) in subjects with alcohol-associated hepatitis (AH), a devastating acute illness without US Food and Drug Administration-approved therapies. METHODS: This phase 2a, multicenter, open-label, dose escalation study evaluated the safety, PK, and efficacy signals of larsucosterol in 19 clinically diagnosed subjects with AH. Based on the model for end-stage liver disease (MELD) score, 7 subjects were considered to have moderate AH and 12 to have severe AH. All subjects received 1 or 2 intravenous infusions (72 hours apart) of larsucosterol at a dose of 30, 90, or 150 mg and were followed up for 28 days. Efficacy signals from a subgroup of subjects with severe AH were compared with those from 2 matched arms of those with severe AH treated with standard of care (SOC), including corticosteroids, from a contemporaneous study. RESULTS: All 19 larsucosterol-treated subjects survived the 28-day study. Fourteen (74%) of all subjects including 8 (67%) of the subjects with severe AH were discharged ≤72 hours after receiving a single infusion. There were no drug-related serious adverse events nor early terminations due to the treatment. PK profiles were not affected by disease severity. Biochemical parameters improved in most subjects. Serum bilirubin levels declined notably from baseline to day 7 and day 28, and MELD scores were reduced at day 28. The efficacy signals compared favorably with those from 2 matched groups treated with SOC. Lille scores at day 7 were <0.45 in 16 of the 18 (89%) subjects with day 7 samples. Lille scores from 8 subjects with severe AH who received 30 or 90 mg larsucosterol (doses used in phase 2b trial) were statistically significantly lower ( P < 0.01) than those from subjects with severe AH treated with SOC from the contemporaneous study. DISCUSSION: Larsucosterol was well tolerated at all 3 doses in subjects with AH without safety concerns. Data from this pilot study showed promising efficacy signals in subjects with AH. Larsucosterol is being evaluated in a phase 2b multicenter, randomized, double-blinded, placebo-controlled (AHFIRM) trial.


Subject(s)
End Stage Liver Disease , Hepatitis, Alcoholic , Humans , Pilot Projects , Severity of Illness Index , Hepatitis, Alcoholic/drug therapy , Hepatitis, Alcoholic/diagnosis
9.
Int J Biol Sci ; 19(16): 5036-5054, 2023.
Article in English | MEDLINE | ID: mdl-37928257

ABSTRACT

Pulmonary and systemic hypertension (PH, SH) are characterized by vasoconstriction and vascular remodeling resulting in increased vascular resistance and pulmonary/aortic artery pressures. The chronic stress leads to inflammation, oxidative stress, and infiltration by immune cells. Roles of metals in these diseases, particularly PH are largely unknown. This review first discusses the pathophysiology of PH including vascular oxidative stress, inflammation, and remodeling in PH; mitochondrial dysfunction and metabolic changes in PH; ion channel and its alterations in the pathogenesis of PH as well as PH-associated right ventricular (RV) remodeling and dysfunctions. This review then summarizes metal general features and essentiality for the cardiovascular system and effects of metals on systemic blood pressure. Lastly, this review explores non-essential and essential metals and potential roles of their dyshomeostasis in PH and RV dysfunction. Although it remains early to conclude the role of metals in the pathogenesis of PH, emerging direct and indirect evidence implicates the possible contributions of metal-mediated toxicities in the development of PH. Future research should focus on comprehensive clinical metallomics study in PH patients; mechanistic evaluations to elucidate roles of various metals in PH animal models; and novel therapy clinical trials targeting metals. These important discoveries will significantly advance our understandings of this rare yet fatal disease, PH.


Subject(s)
Hypertension, Pulmonary , Hypertension , Animals , Humans , Hypertension, Pulmonary/metabolism , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Lung/metabolism , Inflammation/metabolism , Ventricular Remodeling
10.
Environ Toxicol Pharmacol ; 103: 104260, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37683712

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH.

11.
Metabolites ; 13(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37623845

ABSTRACT

Many pesticides have been identified as endocrine and metabolism-disrupting chemicals with hepatotoxic effects. However, data are limited for insecticides in the n-methyl carbamate class, including methomyl. Here, we investigate the liver and systemic metabolic effects of methomyl in a mouse model. We hypothesize that methomyl exposure will disrupt xenobiotic and intermediary metabolism and promote hepatic steatosis in mice. Male C57BL/6 mice were exposed daily to 0-5 mg/kg methomyl for 18 days. Mice were fed water and regular chow diet ad libitum. Metabolic phenotyping was performed, and tissue samples were collected. Effects were generally greatest at the highest methomyl dose, which induced Cyp1a2. Methomyl decreased whole body weight while the liver:body weight and testes:body weight ratios were increased. Hepatic steatosis increased while plasma LDL decreased. Fasting blood glucose and the glucose tolerance test area under the curve decreased along with hepatic glycogen stores. Methomyl, however, did not increase liver oxidative stress or injury. Collectively, these data demonstrate that methomyl disrupts hepatic xenobiotic and intermediary metabolism while increasing the testes:body weight ratio, suggesting that it may be an endocrine disrupting chemical. Besides methomyl's known action in cholinesterase inhibition, it may be involved in aryl hydrocarbon receptor activation. The potential impact of n-methyl carbamate insecticides on metabolic health and diseases, including toxicant-associated steatotic liver disease (TASLD), warrants further investigation.

12.
Genes (Basel) ; 14(8)2023 08 19.
Article in English | MEDLINE | ID: mdl-37628704

ABSTRACT

Fatty liver disease is one of the major causes of morbidity and mortality worldwide. Fatty liver includes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), now replaced by a consensus group as metabolic dysfunction-associated steatotic liver disease (MASLD). While excess nutrition and obesity are major contributors to fatty liver, the underlying mechanisms remain largely unknown and therapeutic interventions are limited. Reversible chemical modifications in RNA are newly recognized critical regulators controlling post-transcriptional gene expression. Among these modifications, N6-methyladenosine (m6A) is the most abundant and regulates transcript abundance in fatty liver disease. Modulation of m6A by readers, writers, and erasers (RWE) impacts mRNA processing, translation, nuclear export, localization, and degradation. While many studies focus on m6A RWE expression in human liver pathologies, limitations of technology and bioinformatic methods to detect m6A present challenges in understanding the epitranscriptomic mechanisms driving fatty liver disease progression. In this review, we summarize the RWE of m6A and current methods of detecting m6A in specific genes associated with fatty liver disease.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Adenosine/genetics , Computational Biology , Nutritional Status
13.
Article in English | MEDLINE | ID: mdl-37426695

ABSTRACT

Introduction: Polychlorinated biphenyls (PCBs) are persistent environmental toxicants that have been implicated in numerous health disorders including liver diseases such as non-alcoholic fatty liver disease (NAFLD). Toxicant-associated NAFLD, also known as toxicant-associated fatty liver disease (TAFLD), consists of a spectrum of disorders ranging from steatosis and steatohepatitis to fibrosis and hepatocellular carcinoma. Previously, our group demonstrated that 12-week exposure to the PCB mixture, Aroclor 1260, exacerbated steatohepatitis in high-fat diet (HFD)-fed mice; however, the longer-term effects of PCBs on TAFLD remain to be elucidated. This study aims to examine the longer-term effects of Aroclor 1260 (>30 weeks) in a diet-induced obesity model to better understand how duration of exposure can impact TAFLD. Methods: Male C57BL/6 mice were exposed to Aroclor 1260 (20 mg/kg) or vehicle control by oral gavage at the beginning of the study period and fed either a low-fat diet (LFD) or HFD throughout the study period. Results: Aroclor 1260 exposure (>30 weeks) led to steatohepatitis only in LFD-fed mice. Several Aroclor 1260 exposed LFD-fed mice also developed hepatocellular carcinoma (25%), which was absent in HFD-fed mice. The LFD+Aroclor1260 group also exhibited decreased hepatic Cyp7a1 expression and increased pro-fibrotic Acta2 expression. In contrast, longer term Aroclor 1260 exposure in conjunction with HFD did not exacerbate steatosis or inflammatory responses beyond those observed with HFD alone. Further, hepatic xenobiotic receptor activation by Aroclor 1260 was absent at 31 weeks post exposure, suggesting PCB redistribution to the adipose and other extra-hepatic tissues with time. Discussion: Overall, the results demonstrated that longer-term PCB exposure worsened TAFLD outcomes independent of HFD feeding and suggests altered energy metabolism as a potential mechanism fueling PCB mediated toxicity without dietary insult. Additional research exploring mechanisms for these longer-term PCB mediated toxicity in TAFLD is warranted.

14.
Environ Health Perspect ; 131(6): 65001, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37352010

ABSTRACT

BACKGROUND: Funding agencies, publishers, and other stakeholders are pushing environmental health science investigators to improve data sharing; to promote the findable, accessible, interoperable, and reusable (FAIR) principles; and to increase the rigor and reproducibility of the data collected. Accomplishing these goals will require significant cultural shifts surrounding data management and strategies to develop robust and reliable resources that bridge the technical challenges and gaps in expertise. OBJECTIVE: In this commentary, we examine the current state of managing data and metadata-referred to collectively as (meta)data-in the experimental environmental health sciences. We introduce new tools and resources based on in vivo experiments to serve as examples for the broader field. METHODS: We discuss previous and ongoing efforts to improve (meta)data collection and curation. These include global efforts by the Functional Genomics Data Society to develop metadata collection tools such as the Investigation, Study, Assay (ISA) framework, and the Center for Expanded Data Annotation and Retrieval. We also conduct a case study of in vivo data deposited in the Gene Expression Omnibus that demonstrates the current state of in vivo environmental health data and highlights the value of using the tools we propose to support data deposition. DISCUSSION: The environmental health science community has played a key role in efforts to achieve the goals of the FAIR guiding principles and is well positioned to advance them further. We present a proposed framework to further promote these objectives and minimize the obstacles between data producers and data scientists to maximize the return on research investments. https://doi.org/10.1289/EHP11484.


Subject(s)
Environmental Health , Genomics , Reproducibility of Results , Information Dissemination , Metadata
15.
Environ Toxicol Pharmacol ; 100: 104138, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37137421

ABSTRACT

Chronic environmental exposure to polychlorinated biphenyls (PCBs) is associated with non-alcoholic fatty liver disease (NAFLD) and exacerbated by a high fat diet (HFD). Here, chronic (34 wks.) exposure of low fat diet (LFD)-fed male mice to Aroclor 1260 (Ar1260), a non-dioxin-like (NDL) mixture of PCBs, resulted in steatohepatitis and NAFLD. Twelve hepatic RNA modifications were altered with Ar1260 exposure including reduced abundance of 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A), in contrast to increased Am in the livers of HFD-fed, Ar1260-exposed mice reported previously. Differences in 13 RNA modifications between LFD- and HFD- fed mice, suggest that diet regulates the liver epitranscriptome. Integrated network analysis of epitranscriptomic modifications identified a NRF2 (Nfe2l2) pathway in the chronic, LFD, Ar1260-exposed livers and an NFATC4 (Nfatc4) pathway for LFD- vs. HFD-fed mice. Changes in protein abundance were validated. The results demonstrate that diet and Ar1260 exposure alter the liver epitranscriptome in pathways associated with NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Polychlorinated Biphenyls , Male , Animals , Mice , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , Polychlorinated Biphenyls/metabolism , Liver/metabolism , Diet, High-Fat , RNA , Mice, Inbred C57BL
16.
Am J Clin Nutr ; 118(1): 329-337, 2023 07.
Article in English | MEDLINE | ID: mdl-37230178

ABSTRACT

On September 7 and 8, 2022, Healthy Environment and Endocrine Disruptors Strategies, an Environmental Health Sciences program, convened a scientific workshop of relevant stakeholders involved in obesity, toxicology, or obesogen research to review the state of the science regarding the role of obesogenic chemicals that might be contributing to the obesity pandemic. The workshop's objectives were to examine the evidence supporting the hypothesis that obesogens contribute to the etiology of human obesity; to discuss opportunities for improved understanding, acceptance, and dissemination of obesogens as contributors to the obesity pandemic; and to consider the need for future research and potential mitigation strategies. This report details the discussions, key areas of agreement, and future opportunities to prevent obesity. The attendees agreed that environmental obesogens are real, significant, and a contributor at some degree to weight gain at the individual level and to the global obesity and metabolic disease pandemic at a societal level; moreover, it is at least, in theory, remediable.


Subject(s)
Endocrine Disruptors , Environmental Exposure , Humans , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Endocrine Disruptors/toxicity , Obesity/epidemiology , Obesity/etiology , Obesity/metabolism , Weight Gain , Pandemics
17.
Toxicol Appl Pharmacol ; 468: 116514, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37061008

ABSTRACT

BACKGROUND & AIMS: Vinyl chloride (VC) monomer is a volatile organic compound commonly used in industry. At high exposure levels, VC causes liver cancer and toxicant-associated steatohepatitis. However, lower exposure levels (i.e., sub-regulatory exposure limits) that do not directly damage the liver, enhance injury caused by Western diet (WD). It is still unknown if the long-term impact of transient low-concentration VC enhances the risk of liver cancer development. This is especially a concern given that fatty liver disease is in and of itself a risk factor for the development of liver cancer. METHODS: C57Bl/6 J mice were fed WD or control diet (CD) for 1 year. During the first 12 weeks of feeding only, mice were also exposed to VC via inhalation at sub-regulatory limit concentrations (<1 ppm) or air for 6 h/day, 5 days/week. RESULTS: Feeding WD for 1 year caused significant hepatic injury, which was exacerbated by VC. Additionally, VC increased the number of tumors which ranged from moderately to poorly differentiated hepatocellular carcinoma (HCC). Transcriptomic analysis demonstrated VC-induced changes in metabolic but also ribosomal processes. Epitranscriptomic analysis showed a VC-induced shift of the modification pattern that has been associated with metabolic disease, mitochondrial dysfunction, and cancer. CONCLUSIONS: These data indicate that VC sensitizes the liver to other stressors (e.g., WD), resulting in enhanced tumorigenesis. These data raise concerns about potential interactions between VC exposure and WD. It also emphasizes that current safety restrictions may be insufficient to account for other factors that can influence hepatotoxicity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Vinyl Chloride , Mice , Animals , Vinyl Chloride/toxicity , Vinyl Chloride/metabolism , Transcriptome , Carcinoma, Hepatocellular/pathology , Diet, Western , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism
18.
Toxicol Sci ; 193(1): 103-114, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36892438

ABSTRACT

Alterations in physiological processes in pancreas have been associated with various metabolic dysfunctions and can result from environmental exposures, such as chemicals and diet. It was reported that environmental vinyl chloride (VC) exposure, a common industrial organochlorine and environmental pollutant, significantly exacerbated metabolic-related phenotypes in mice fed concurrently with high-fat diet (HFD) but not low-fat diet (LFD). However, little is known about the role of the pancreas in this interplay, especially at a proteomic level. The present study was undertaken to examine the protein responses to VC exposure in pancreas tissues of C57BL/6J mice fed LFD or HFD, with focus on the investigation of protein expression and/or phosphorylation levels of key protein biomarkers of carbohydrate, lipid, and energy metabolism, oxidative stress and detoxification, insulin secretion and regulation, cell growth, development, and communication, immunological responses and inflammation, and biomarkers of pancreatic diseases and cancers. We found that the protein alterations may indicate diet-mediated susceptibility in mouse pancreas induced by HFD to concurrent exposure of low levels of inhaled VC. These proteome biomarkers may lead to a better understanding of pancreas-mediated adaptive or adverse response and susceptibility to metabolic disease.


Subject(s)
Proteome , Vinyl Chloride , Animals , Mice , Diet, High-Fat/adverse effects , Proteomics , Mice, Inbred C57BL , Pancreas , Biomarkers
19.
Pulm Circ ; 13(1): e12202, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36824690

ABSTRACT

Pulmonary arterial hypertension (PAH) prevalence is increasing worldwide, and the prognosis is poor with 5-year survival < 50% in high risk patients. The relationship between metal exposure/essential metal dyshomeostasis and PAH/right ventricular dysfunction is less investigated. The aim of this study is to investigate vegetable consumptions and metal levels between PAH patients and controls. This was a prospective, single center pilot study. Questionnaires were completed by all study subjects (20 PAH patients and 10 healthy controls) on smoking, metal exposure risks, metal supplements, and vegetable consumptions. Blood and urine samples were collected to measure 25 metal levels in blood, plasma, and urine using an X Series II quadrupole inductively coupled plasma mass spectrometry. Statistical analysis was conducted using SAS 9.5 and results with p value < 0.05 were considered significant. Vegetables consumptions (broccoli risk ratio [RR] = 0.4, CI = (0.2, 0.9)], cabbage [RR = 0.2, CI = (0.1, 0.8)], and brussel sprouts [RR = 0.2, CI = (0.1, 0.5)]) are associated with less risks of PAH. In the plasma samples, silver (p < 0.001), and copper (p = 0.002) levels were significantly higher in PAH patients. There was significant positive correlation between cardiac output and cardiac index with plasma levels of silver (r = 0.665, p = 0.001 and r = 0.678 p = 0.001), respectively. There was significant correlation between mixed venous saturation, 6-min walk distance, and last BNP with plasma levels of chromium (r = -0.520, p = 0.022; r = -0.55, p = 0.014; r = 0.463, p = 0.039), respectively. In conclusion, there are significant differences between PAH and control groups in terms of vegetable consumptions and metal concentrations. Silver and chromium levels are correlated with clinical indicators of PAH severities.

20.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675277

ABSTRACT

The pathogenesis of non-alcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disease, is associated with zinc deficiency. Previous studies show zinc supplementation improves steatosis and glucose metabolism, but its therapeutic effects in patients with established NAFLD remain unclear. We developed an in vivo model to characterize the effects of zinc supplementation on high-fat diet (HFD) induced NAFLD and hypothesized that the established NAFLD would be attenuated by zinc supplementation. Male C57BL/6J mice were fed a control diet or HFD for 12 weeks. Mice were then further grouped into normal and zinc-supplemented diets for 8 additional weeks. Body composition and glucose tolerance were determined before and after zinc supplementation. At euthanasia, plasma and liver tissue were collected for characterization and downstream analysis. As expected, 12 weeks of HFD resulted in reduced glucose clearance and altered body composition. Eight weeks of subsequent zinc supplementation did not alter glucose handling, plasma transaminases, steatosis, or hepatic gene expression. Results from our model suggest 8-week zinc supplementation cannot reverse established NAFLD. The HFD may have caused NAFLD disease progression beyond rescue by an 8-week period of zinc supplementation. Future studies will address these limitations and provide insights into zinc as a therapeutic agent for established NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Diet, High-Fat/adverse effects , Zinc/metabolism , Mice, Inbred C57BL , Liver/metabolism , Dietary Supplements , Glucose/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...