Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 371(1-3): 19-30, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-16996577

ABSTRACT

We outline a plausible, albeit extreme, managed realignment scenario ('Extended Deep Green' scenario) for a large UK estuary to demonstrate the maximum possible biogeochemical effects and economic outcomes of estuarine management decisions. Our interdisciplinary approach aims to better inform the policy process, by combining biogeochemical and socioeconomic components of managed realignment schemes. Adding 7494 ha of new intertidal area to the UK Humber estuary through managed realignment leads to the annual accumulation of a 1.2 x 10(5) t of 'new' sediment and increases the current annual sink of organic C and N, and particle reactive P in the estuary by 150%, 83% and 50%, respectively. The increase in intertidal area should also increase denitrification. However, this positive outcome is offset by the negative effect of enhanced greenhouse gas emissions in new marshes in the low salinity region of the estuary. Short-term microbial reactions decrease the potential benefits of CO(2) sequestration through gross organic carbon burial by at least 50%. Net carbon storage is thus most effective where oxidation and denitrification reactions are reduced. In the Humber this translates to wet, saline marshes at the seaward end of estuaries. Cost-benefit analysis (CBA) was used to determine the economic efficiency of the Extended Deep Green managed realignment. When compared to a 'Hold-the-Line' future scenario, i.e. the present state/extent of sea defences in the estuary, the CBA shows that managed realignment is cost effective when viewed on >25 year timescales. This is because capital costs are incurred in the first years, whereas the benefits from habitat creation, carbon sequestration and reduced maintenance costs build up over time. Over 50- and 100-year timescales, the Extended Deep Green managed realignment scenario is superior in efficiency terms. The increased sediment accumulation is also likely to enhance storage of contaminant metals. In the case of Cu, a metal that currently causes significant water quality issues, Cu removal due to burial of suspended sediment in realigned areas translates to a value of approximately pounds sterling 1000 a(-1) (avoided clean up costs). Although this is not formally included in the CBA it illustrates another likely positive economic outcome of managed realignment. Although we focus on the Humber, the history of reclamation and its biogeochemistry is common to many estuaries in northern Europe.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring/methods , Geologic Sediments , Wetlands , Conservation of Natural Resources/economics , Conservation of Natural Resources/methods , Cost-Benefit Analysis , Geologic Sediments/analysis , United Kingdom
2.
Sci Total Environ ; 314-316: 31-52, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14499525

ABSTRACT

The present water quality of the Humber rivers and coastal zone depends on a complex interplay of factors, including physical ones, such as the underlying geology, which influences soil type, climatic ones, such as the rainfall, which influences runoff, socio-economic ones, which influence present-day human activities in the catchment, and the legacy of former activities, such as contaminated sediments from mining. All of these factors affect the fluxes of nutrients and other contaminants to the rivers and coastal zone. The Water Framework Directive (WFD) requires the production of a river basin management plan intended to lead to the achievement of good chemical and ecological status for all water bodies in the catchment over the next two decades. This paper provides an overview of the current environmental and socio-economic state of the Humber catchment and coastal zone, and broadly examines how socio-economic drivers affect the fluxes of nutrients and contaminants to the coastal zone, using the driver-pressure-state-impact-response (DPSIR) approach. This is followed by an overview of future research, describing the use of scenarios to simulate future fluxes and provide a consistent framework to evaluate potential policies to improve water quality in the estuary. The Humber catchment is one of eight case studies within a European research project, EUROCAT (EVK1-CT-2000-00044), which aims to achieve integrated catchment and coastal zone management by analysing the response of the coastal sea to changes in fluxes of nutrients and contaminants from the catchments. For the Humber case study, the research focuses on the fluxes of two nutrient elements, N and P, and four metal contaminants, As, Cu, Pb and Zn. The project requires the integration of scientific and socio-economic approaches, bringing together quantitative environmental data garnered for individual river catchments and coastal zones in previous research programmes, and local and regional socio-economic data, to aid decision-makers in their search for integrated and sustainable coastal zone management strategies.


Subject(s)
Ecosystem , Environment , Environmental Pollution/economics , Environmental Pollution/prevention & control , Animals , Conservation of Natural Resources , Decision Making , Environmental Monitoring , Europe , Humans , Metals, Heavy , Nitrogen , Phosphorus , Policy Making , Social Conditions , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...