Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 11(11): 3733-3742, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36260840

ABSTRACT

Cell-free protein synthesis is an important tool for studying gene expression and harnessing it for applications. In cells, gene expression is regulated in part by the spatial organization of transcription and translation. Unfortunately, current cell-free approaches are unable to control the organization of molecular components needed for gene expression, which limits the ability to probe and utilize its effects. Here, we show, using complementary computational and experimental approaches, that macromolecular crowding can be used to control the spatial organization and translational efficiency of gene expression in cell-sized vesicles. Computer simulations and imaging experiments reveal that, as crowding is increased, DNA plasmids become localized at the inner surface of vesicles. Ribosomes, in contrast, remain uniformly distributed, demonstrating that crowding can be used to differentially organize components of gene expression. We further carried out cell-free protein synthesis reactions in cell-sized vesicles and quantified mRNA and protein abundance. At sufficiently high levels of crowding, we observed localization of mRNA near vesicle surfaces, a decrease in translational efficiency and protein abundance, and anomalous scaling of protein abundance as a function of vesicle size. These results are consistent with high levels of crowding causing altered spatial organization and slower diffusion. Our work demonstrates a straightforward way to control the organization of gene expression in cell-sized vesicles and provides insight into the spatial regulation of gene expression in cells.


Subject(s)
Proteins , Macromolecular Substances/metabolism , Diffusion , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression
2.
ACS Synth Biol ; 7(5): 1251-1258, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29687993

ABSTRACT

Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting-the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increase in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA ("spatial noise") that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. These results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.


Subject(s)
Macromolecular Substances/metabolism , Proteins/metabolism , RNA, Messenger/metabolism , Synthetic Biology/methods , Cell-Free System , Gene Expression , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Protein Biosynthesis , Proteins/genetics , RNA, Messenger/genetics , Red Fluorescent Protein
3.
ACS Synth Biol ; 6(2): 334-343, 2017 02 17.
Article in English | MEDLINE | ID: mdl-27690390

ABSTRACT

Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts, that intimately links expression bursting and resource sharing. Yet, most recent investigations have focused on specific molecular mechanisms intrinsic to the bursty behavior of individual genes, while little is known about the interplay between resource sharing and global expression bursting behavior. Here, we confine Escherichia coli cell extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore how resource sharing influences expression bursting. Interestingly, expression burst size, but not burst frequency, is highly sensitive to the size of the shared transcription and translation resource pools. The intriguing implication of these results is that expression bursts are more readily amplified than initiated, suggesting that burst formation occurs through positive feedback or cooperativity. When extrapolated to prokaryotic cells, these results suggest that large translational bursts may be correlated with large transcriptional bursts. This correlation is supported by recently reported transcription and translation bursting studies in E. coli. The results reported here demonstrate a strong intimate link between global expression burst patterns and resource sharing, and they suggest that bursting plays an important role in optimizing the use of limited, shared expression resources.


Subject(s)
Escherichia coli/genetics , Gene Expression , Models, Genetic , Cell-Free System , Green Fluorescent Proteins/genetics , Image Processing, Computer-Assisted , Microfluidics/instrumentation , RNA, Messenger
4.
J Vis Exp ; (97)2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25867144

ABSTRACT

Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g., global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) device contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Here we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques used in cellular systems to characterize CFPS gene circuits and their interactions with the cell-free environment.


Subject(s)
Cell-Free System/chemistry , Cell-Free System/metabolism , Protein Array Analysis/instrumentation , Protein Array Analysis/methods , Protein Biosynthesis , Gene Expression , Gene Regulatory Networks , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Microtechnology/instrumentation , Microtechnology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...