Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(11): 9662-9685, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38831692

ABSTRACT

The new ligand L2Ad, obtained by conjugating the bifunctional species bis(3,5-dimethylpyrazol-1-yl)-acetate and the drug amantadine, was used as a chelator for the synthesis of new Cu complexes 1-5. Their structures were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and by combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modeling. The structure of complex 3 was determined by single-crystal X-ray diffraction analysis. Tested on U87, T98, and U251 glioma cells, Cu(II) complex 3 and Cu(I) complex 5 decreased cell viability with IC50 values significantly lower than cisplatin, affecting cell growth, proliferation, and death. Their effects were prevented by treatment with the Cu chelator tetrathiomolybdate, suggesting the involvement of copper in their cytotoxic activity. Both complexes were able to increase ROS production, leading to DNA damage and death. Interestingly, nontoxic doses of 3 or 5 enhanced the chemosensitivity to Temozolomide.


Subject(s)
Adamantane , Antineoplastic Agents , Coordination Complexes , Copper , Glioblastoma , Humans , Copper/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Ligands , Adamantane/pharmacology , Adamantane/chemistry , Adamantane/chemical synthesis , Adamantane/analogs & derivatives , Cell Line, Tumor , Cell Proliferation/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Cell Survival/drug effects , Density Functional Theory , Drug Screening Assays, Antitumor , Reactive Oxygen Species/metabolism , Molecular Structure , Chelating Agents/chemistry , Chelating Agents/pharmacology , Chelating Agents/chemical synthesis , Structure-Activity Relationship , Acetates/chemistry , Acetates/pharmacology , Acetates/chemical synthesis
2.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396717

ABSTRACT

The 3d transition metal (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes, supported by anions of sterically demanding ß-diketones, 1,3-dimesitylpropane-1,3-dione (HLMes) and 1,3-bis(3,5-bis(trifluoromethyl)phenyl)-3-hydroxyprop-2-en-1-one (HLCF3), were synthesized and evaluated for their antitumor activity. To assess the biological effects of substituents on phenyl moieties, we also synthesized and investigated the analogous metal(II) complexes of the anion of the less bulky 1,3-diphenylpropane-1,3-dione (HLPh) ligand. The compounds [Cu(LCF3)2], [Cu(LMes)2] and ([Zn(LMes)2]) were characterized by X-ray crystallography. The [Cu(LCF3)2] crystallizes with an apical molecule of solvent (THF) and features a rare square pyramidal geometry at the Cu(II) center. The copper(II) and zinc(II) complexes of diketonate ligands, derived from the deprotonated 1,3-dimesitylpropane-1,3-dione (HLMes), adopt a square planar or a tetrahedral geometry at the metal, respectively. We evaluated the antitumor properties of the newly synthesized (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes against a series of human tumor cell lines derived from different solid tumors. Except for iron derivatives, cellular studies revealed noteworthy antitumor properties, even towards cancer cells endowed with poor sensitivity to the reference drug cisplatin.


Subject(s)
Coordination Complexes , Copper , Humans , Copper/chemistry , Metals/chemistry , Zinc/chemistry , Iron/chemistry , Ferrous Compounds , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Crystallography, X-Ray , Molecular Structure
3.
Molecules ; 29(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338366

ABSTRACT

The new 3-monosubstituted acetylacetone ligands, 3-(phenyl(1H-pyrazol-1-yl)methyl)pentane-2,4-dione (HLacPz) and 3-((3,5-dimethyl-1H-pyrazol-1-yl)(phenyl)methyl)pentane-2,4-dione (HLacPzMe), were synthesized and used as supporting ligands for new copper(II) and copper(I) phosphane complexes of the general formulae [Cu(HLacX)2(LacX)2] and [Cu(PPh3)2(HLacX)]PF6 (X = Pz (pyrazole) or PzMe (3,5-dimethylpyrazole)), respectively. In the syntheses of the Cu(I) complexes, the triphenylphosphine coligand (PPh3) was used to stabilize copper in the +1 oxidation state, avoiding oxidation to Cu(II). All compounds were characterized by CHN analysis, 1H-NMR, 13C-NMR, FT-IR spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). The ligands HLacPz (1) and HLacPzMe (2) and the copper complex [Cu(PPh3)2(HLacPz)]PF6 (3) were also characterized by X-ray crystallography. The reactivity of these new compounds was investigated and the new compounds 4-phenyl-4-(1H-pyrazol-1-yl)butan-2-one (7) and 4-(3,5-dimethyl-1H-pyrazol-1-yl)-4-phenylbutan-2-one (8) were obtained in basic conditions via the retro-Claisen reaction of related 3-monosubstituted acetylacetone, providing efficient access to synthetically useful ketone compounds. Compound 8 was also characterized by X-ray crystallography.

4.
Dalton Trans ; 52(34): 12098-12111, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37581477

ABSTRACT

Design, synthesis, and in vitro antitumor properties of Cu(I) and Ag(I) phosphane complexes supported by the anions of sterically hindered ß-diketone ligands, 1,3-dimesitylpropane-1,3-dione (HLMes) and 1,3-bis(3,5-bis(trifluoromethyl)phenyl)-3-hydroxyprop-2-en-1-one (HLCF3) featuring trifluoromethyl or methyl groups on the phenyl moieties have been reported. In order to compare the biological effects of substituents on the phenyl moieties, the analogous copper(I) and silver(I) complexes of the anion of the parent 1,3-diphenylpropane-1,3-dione (HLPh) ligand were also synthesized and included in the study. In the syntheses of the Cu(I) and Ag(I) complexes, the phosphane coligands triphenylphosphine (PPh3) and 1,3,5-triaza-7-phosphaadamantane (PTA) were used to stabilize silver and copper in the +1 oxidation state, preventing the metal ion reduction to Ag(0) or oxidation to Cu(II), respectively. X-ray crystal structures of HLCF3 and the metal adducts [Cu(LCF3)(PPh3)2] and [Ag(LPh)(PPh3)2] are also presented. The antitumor properties of both classes of metal complexes were evaluated against a series of human tumor cell lines derived from different solid tumors, by means of both 2D and 3D cell viability studies. They display noteworthy antitumor properties and are more potent than cisplatin in inhibiting cancer cell growth.

5.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835512

ABSTRACT

Bis(pyrazol-1-yl)acetic acid (HC(pz)2COOH) and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid (HC(pzMe2)2COOH) were converted into the methyl ester derivatives 1 (LOMe) and 2 (L2OMe), respectively, and were used for the preparation of silver(I) complexes 3-5. The Ag(I) complexes were prepared by the reaction of AgNO3 and 1,3,5-triaza-7-phosphaadamantane (PTA) or triphenylphosphine (PPh3) with LOMe and L2OMe in methanol solution. All Ag(I) complexes showed a significant in vitro antitumor activity, proving to be more effective than the reference drug cisplatin in the in-house human cancer cell line panel containing examples of different solid tumors. Compounds were particularly effective against the highly aggressive and intrinsically resistant human small-cell lung carcinoma (SCLC) cells, either in 2D and 3D cancer cell models. Mechanistic studies revealed their ability to accumulate into cancer cells and to selectively target Thioredoxin (TrxR), thus leading to redox homeostasis unbalance and ultimately inducing cancer cell death through apoptosis.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Humans , Silver , Ligands , Acetates , Thioredoxins , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology
6.
Polymers (Basel) ; 14(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36297926

ABSTRACT

The effect of four lignocellulosic waste fillers on the thermal and mechanical properties of biocomposites was investigated. Powdered licorice root, palm leaf, holm oak and willow fillers were melt compounded with polypropylene at two different weight contents, i.e., 10 and 30, and then injection molded. A commercially available maleated coupling agent was used to improve the filler/matrix interfacial adhesion at 5 wt.%. Composites were subjected to chemical (FTIR-ATR), thermal (TGA, DSC, DMA) and mechanical (tensile, bending and Charpy impact) analyses coupled with a morphological investigation by scanning electron microscopy. Although similarities among the different formulations were noted, holm oak fillers provided the best combination of thermal and mechanical performance. In particular, at 30 wt.% content with coupling agent, this composite formulation displayed remarkable increases in tensile strength and modulus, flexural strength and modulus, of 28% and 110%, 58% and 111%, compared to neat PP, respectively. The results imply that all these lignocellulosic waste fillers can be used successfully as raw materials for biocomposites, with properties comparable to those featured by other natural fillers.

SELECTION OF CITATIONS
SEARCH DETAIL
...