Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 121: 103364, 2024 May.
Article in English | MEDLINE | ID: mdl-38701626

ABSTRACT

PURPOSE: Test whether a well-grounded KBP model trained on moderately hypo-fractionated prostate treatments can be used to satisfactorily drive the optimization of SBRT prostate treatments. MATERIALS AND METHODS: A KBP model (SBRT-model) was developed, trained and validated using the first forty-seven clinically treated VMAT SBRT prostate plans (42.7 Gy/7fx or 36.25 Gy/5fx). The performance and robustness of this model were compared against a high-quality KBP-model (ST-model) that was already clinically adopted for hypo-fractionated (70 Gy/28fx and 60 Gy/20fx) prostate treatments. The two models were compared in terms of their predictions robustness, and the quality of their outcomes were evaluated against a set of reference clinical SBRT plans. Plan quality was assessed using DVH metrics, blinded clinical ranking, and a dedicated Plan Quality Metric algorithm. RESULTS: The plan libraries of the two models were found to share a high degree of anatomical similarity. The overall quality (APQM%) of the plans obtained both with the ST- and SBRT-models was compatible with that of the original clinical plans, namely (93.7 ± 4.1)% and (91.6 ± 3.9)% vs (92.8.9 ± 3.6)%. Plans obtained with the ST-model showed significantly higher target coverage (PTV V95%): (97.9 ± 0.8)% vs (97.1 ± 0.9)% (p < 0.05). Conversely, plans optimized following the SBRT-model showed a small but not-clinically relevant increase in OAR sparing. ST-model generally provided more reliable predictions than SBRT-model. Two radiation oncologists judged as equivalent the plans based on the KBP prediction, which was also judged better that reference clinical plans. CONCLUSION: A KBP model trained on moderately fractionated prostate treatment plans provided optimal SBRT prostate plans, with similar or larger plan quality than an embryonic SBRT-model based on a limited number of cases.


Subject(s)
Prostatic Neoplasms , Radiosurgery , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiosurgery/methods , Male , Prostatic Neoplasms/radiotherapy , Knowledge Bases , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
2.
Phys Imaging Radiat Oncol ; 26: 100435, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37089905

ABSTRACT

Background and purpose: Prediction models may be reliable decision-support tools to reduce the workload associated with the measurement-based patient-specific quality assurance (PSQA) of radiotherapy plans. This study compared the effectiveness of three different models based on delivery parameters, complexity metrics and sinogram radiomics features as tools for virtual-PSQA (vPSQA) of helical tomotherapy (HT) plans. Materials and methods: A dataset including 881 RT plans created with two different treatment planning systems (TPSs) was collected. Sixty-five indicators including 12 delivery parameters (DP) and 53 complexity metrics (CM) were extracted using a dedicated software library. Additionally, 174 radiomics features (RF) were extracted from the plans' sinograms. Three groups of variables were formed: A (DP), B (DP + CM) and C (DP + CM + RF). Regression models were trained to predict the gamma index passing rate P R γ (3%G, 2mm) and the impact of each group of variables was investigated. ROC-AUC analysis measured the ability of the models to accurately discriminate between 'deliverable' and 'non-deliverable' plans. Results: The best performance was achieved by model C which allowed detecting around 16% and 63% of the 'deliverable' plans with 100% sensitivity for the two TPSs, respectively. In a real clinical scenario, this would have decreased the whole PSQA workload by approximately 35%. Conclusions: The combination of delivery parameters, complexity metrics and sinogram radiomics features allows for robust and reliable PSQA gamma passing rate predictions and high-sensitivity detection of a fraction of deliverable plans for one of the two TPSs. Promising yet improvable results were obtained for the other one. The results foster a future adoption of vPSQA programs for HT.

3.
Phys Med ; 107: 102542, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36780793

ABSTRACT

BACKGROUND AND PURPOSE: Clinical knowledge-based planning (KBP) models dedicated to prostate radiotherapy treatment may require periodical updates to remain relevant and to adapt to possible changes in the clinic. This study proposes a paired comparison of two different update approaches through a longitudinal analysis. MATERIALS AND METHODS: A clinically validated KBP model for moderately hypofractionated prostate therapy was periodically updated using two approaches: one was targeted at achieving the biggest library size (Mt), while the other one at achieving the highest mean sample quality (Rt). Four subsequent updates were accomplished. The goodness, robustness and quality of the outcomes were measured and compared to those of the common ancestor. Plan quality was assessed through the Plan Quality Metric (PQM) and plan complexity was monitored. RESULTS: Both update procedures allowed for an increase in the OARs sparing between +3.9 % and +19.2 % compared to plans generated by a human planner. Target coverage and homogeneity slightly reduced [-0.2 %;-14.7 %] while plan complexity showed only minor changes. Increasing the sample size resulted in more reliable predictions and improved goodness-of-fit, while increasing the mean sample quality improved the outcomes but slightly reduced the models reliability. CONCLUSIONS: Repeated updates of clinical KBP models can enhance their robustness, reliability and the overall quality of automatically generated plans. The periodical expansion of the model sample accompanied by the removal of the unacceptable low quality plans should maximize the benefits of the updates while limiting the associated workload.


Subject(s)
Prostate , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy Dosage , Reproducibility of Results , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk
4.
J Appl Clin Med Phys ; 24(1): e13781, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36523156

ABSTRACT

PURPOSE: An unnecessary amount of complexity in radiotherapy plans affects the efficiency of the treatments, increasing the uncertainty of dose deposition and its susceptibility to anatomical changes or setup errors. To date, tools for quantitatively assessing the complexity of tomotherapy plans are still limited. In this study, new metrics were developed to characterize different aspects of helical tomotherapy (HT) plans, and their actual effectiveness was investigated. METHODS: The complexity of 464 HT plans delivered on a Radixact platform was evaluated. A new set of metrics was devised to assess beam geometry, leaf opening time (LOT) variability, and modulation over space and time. Sixty-five complexity metrics were extracted from the dataset using the newly in-house developed software library TCoMX: 29 metrics already proposed in the literature and 36 newly developed metrics. Their reciprocal relation is discussed. Their effectiveness was evaluated through correlation analyses with patient-specific quality assurance (PSQA) results. RESULTS: An inverse linear relation was found between the average number of closed leaves and the average number of MLC openings and closures as well as between the choice of the modulation factor and the discontinuity of the field, suggesting some intrinsic link between the LOT distribution and the geometrical complexity of the MLC openings. The newly proposed metrics were at least as correlated as the existing ones to the PSQA results. Metrics describing the geometrical complexity of the MLC openings showed the strongest connection to the PSQA results. Significant correlations were found between at least one of the new metrics and the γ index passing rate P R γ % ( 3 % G , 2 mm ) $P{R}_{\gamma}\%(3\%G,2\textit{mm})$ for six out of seven groups of plans considered. CONCLUSION: The new metrics proposed were shown to be effective to characterize more comprehensively the complexity of HT plans. A software library for their automatic extraction is described and made available.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Software , Radiotherapy Dosage , Benchmarking
5.
Radiat Oncol ; 16(1): 226, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809645

ABSTRACT

PURPOSE: This study presents patient-specific quality assurance (QA) results from the first 395 clinical cases for the new helical TomoTherapy® platform (Radixact) coupled with dedicated Precision TPS. METHODS: The passing rate of the Gamma Index (GP%) of 395 helical QA of patient-specific tomotherapy, acquired with ArcCHECK, is presented, analysed and correlated to various parameters of the plan. Following TG-218 recommendations, the clinic specific action limit (ALcs) and tolerance limit (TLcs) were calculated for our clinic and monitored during the analysed period. RESULTS: The mean values ​​(± 1 standard deviation) of GP% (3%/2 mm) (both global and local normalization) are: 97.6% and 90.9%, respectively. The proposed ALcs and TLcs, after a period of two years' process monitoring are 89.4% and 91.1% respectively. CONCLUSIONS: The phantom measurements closely match the planned dose distributions, demonstrating that the calculation accuracy of the new Precision TPS and the delivery accuracy of the Radixact unit are adequate, with respect to international guidelines and reports. Furthermore, a first correlation with the planning parameters was made. Action and tolerance limits have been set for the new Radixact Linac.


Subject(s)
Neoplasms/radiotherapy , Particle Accelerators/instrumentation , Phantoms, Imaging , Quality Assurance, Health Care/standards , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Gamma Rays , Humans , Organs at Risk/radiation effects , Radiotherapy Dosage
6.
Phys Med Biol ; 66(12)2021 06 16.
Article in English | MEDLINE | ID: mdl-34140431

ABSTRACT

We present a novel application of Tensor Network methods in cancer treatment as a potential tool to solve the dose optimization problem in radiotherapy. In particular, the intensity-modulated radiation therapy technique-that allows treating irregular and inhomogeneous tumors while reducing the radiation toxicity on healthy organs-is based on the optimization problem of the beamlets intensities that shall result in a maximal delivery of the therapy dose to cancer while avoiding the organs at risk of being damaged by the radiation. The resulting optimization problem is expressed as a cost function to be optimized. Here, we map the cost function into an Ising-like Hamiltonian, describing a system of long-range interacting qubits. Finally, we solve the dose optimization problem by finding the ground-state of the Hamiltonian using a Tree Tensor Network algorithm. In particular, we present an anatomical scenario exemplifying a prostate cancer treatment. A similar approach can be applied to future hybrid classical-quantum algorithms, paving the way for the use of quantum technologies in future medical treatments.


Subject(s)
Prostatic Neoplasms , Radiation Injuries , Radiotherapy, Intensity-Modulated , Algorithms , Humans , Male , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...