Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(12): e0260810, 2021.
Article in English | MEDLINE | ID: mdl-34890403

ABSTRACT

In fish, species identity can be encoded by sounds, which have been thoroughly investigated in European gobiids (Gobiidae, Gobius lineage). Recent evolutionary studies suggest that deterministic and/or stochastic forces could generate acoustic differences among related animal species, though this has not been investigated in any teleost group to date. In the present comparative study, we analysed the sounds from nine soniferous gobiids and quantitatively assessed their acoustic variability. Our interspecific acoustic study, incorporating for the first time the representative acoustic signals from the majority of soniferous gobiids, suggested that their sounds are truly species-specific (92% of sounds correctly classified into exact species) and each taxon possesses a unique set of spectro-temporal variables. In addition, we reconstructed phylogenetic relationships from a concatenated molecular dataset consisting of multiple molecular markers to track the evolution of acoustic signals in soniferous gobiids. The results of this study indicated that the genus Padogobius is polyphyletic, since P. nigricans was nested within the Ponto-Caspian clade, while the congeneric P. bonelli turned out to be a sister taxon to the remaining investigated soniferous species. Lastly, by extracting the acoustic and genetic distance matrices, sound variability and genetic distance were correlated for the first time to assess whether sound evolution follows a similar phylogenetic pattern. The positive correlation between the sound variability and genetic distance obtained here emphasizes that certain acoustic features from representative sounds could carry the phylogenetic signal in soniferous gobiids. Our study was the first attempt to evaluate the mutual relationship between acoustic variation and genetic divergence in any teleost fish.


Subject(s)
Fishes/classification , Fishes/physiology , Vocalization, Animal/physiology , Acoustics , Animals , Fishes/genetics , Genetic Variation , Phylogeny , Sequence Analysis, DNA , Sound , Species Specificity , Stochastic Processes
2.
Ecol Evol ; 8(9): 4422-4430, 2018 May.
Article in English | MEDLINE | ID: mdl-29760884

ABSTRACT

Display of bright and striking color patterns is a widespread way of communication in many animal species. Carotenoid-based coloration accounts for most of the bright yellow, orange, and red displays in invertebrates, fish, amphibians, reptiles, and birds, being widely considered a signal of individual health. This type of coloration is under the influence of several factors, such as sexual selection, predator pressure, pigment availability, and light transmission. Fish offer numerous examples of visual communication by means of color patterns. We used a small cyprinodontid fish, Aphanius fasciatus (Valenciennes, 1821), as a model species to assess habitat constraints on the color display in male caudal fin. Populations from natural and open/closed artificial habitats were tested for differences in the pigmentation of caudal fins. The most important factors explaining the intensity of coloration were the habitat type and the chlorophyll concentration in the sediment, followed by water turbidity; yellow fins were observed in natural habitats with low chlorophyll concentration and high water turbidity, while orange fins occurred in artificial habitats with high chlorophyll concentration and low turbidity. Furthermore, A. fasciatus in artificial habitats showed a higher somatic and a lower reproductive allotment with respect to natural habitats, according to the existing literature on the species. Furthermore, in closed artificial habitats, where the most intense reddish coloration of caudal fins was observed, a trade-off between somatic growth and the coloration intensity of a carotenoid-based sexual ornament has been observed; in these populations, intensity of caudal fin coloration was negatively related to the somatic allotment. Results of this study suggested how both the pigmentation of male's caudal fin and the life history strategies of the species are constrained by habitat characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...