Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 32(23): 3237-3248, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37649273

ABSTRACT

Small molecule drugs known as modulators can treat ~90% of people with cystic fibrosis (CF), but do not work for premature termination codon variants such as W1282X (c.3846G>A). Here we evaluated two gene editing strategies, Adenine Base Editing (ABE) to correct W1282X, and Homology-Independent Targeted Integration (HITI) of a CFTR superexon comprising exons 23-27 (SE23-27) to enable expression of a CFTR mRNA without W1282X. In Flp-In-293 cells stably expressing a CFTR expression minigene bearing W1282X, ABE corrected 24% of W1282X alleles, rescued CFTR mRNA from nonsense mediated decay and restored protein expression. However, bystander editing at the adjacent adenine (c.3847A>G), caused an amino acid change (R1283G) that affects CFTR maturation and ablates ion channel activity. In primary human nasal epithelial cells homozygous for W1282X, ABE corrected 27% of alleles, but with a notably lower level of bystander editing, and CFTR channel function was restored to 16% of wild-type levels. Using the HITI approach, correct integration of a SE23-27 in intron 22 of the CFTR locus in 16HBEge W1282X cells was detected in 5.8% of alleles, resulting in 7.8% of CFTR transcripts containing the SE23-27 sequence. Analysis of a clonal line homozygous for the HITI-SE23-27 produced full-length mature protein and restored CFTR anion channel activity to 10% of wild-type levels, which could be increased three-fold upon treatment with the triple combination of CF modulators. Overall, these data demonstrate two different editing strategies can successfully correct W1282X, the second most common class I variant, with a concomitant restoration of CFTR function.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Gene Editing , Codon, Nonsense/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mutation
2.
J Cyst Fibros ; 21(1): 181-187, 2022 01.
Article in English | MEDLINE | ID: mdl-34103250

ABSTRACT

BACKGROUND: W1282X-CFTR variant (c.3846G>A) is the second most common nonsense cystic fibrosis (CF)-causing mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Even though remarkable breakthroughs have been done towards CF treatment with the approval of four CFTR protein modulators, none of these are approved for patients with nonsense mutations. CRISPR gene editing tools can be of great value to permanently correct the genetic defects caused by these mutations. METHODS: We compared the capacity of homology-directed repair (HDR) mediated by Cas9 or Cas12a to correct W1282X CFTR mutation in the CFF-16HBEge W1282X CFTR cell line (obtained from CFF), using Cas9/gRNA and Cas12a/gRNA ribonucleoproteins (RNPs) and single strand DNA (ssODN) oligonucleotide donors. RESULTS: Cas9 shows higher levels of correction than Cas12a as, by electroporating cells with Cas9 RNPs and ssODN donor, nearly 18% of precise editing was achieved compared to just 8% for Cas12a. Such levels of correction increase the abundance of CFTR mRNA and protein, and partially restore CFTR function in the pool of edited cells to 18% of WT CFTR function. Moreover, homozygous corrected clones produced levels of mRNA, protein, and function comparable to those of cells expressing WT CFTR. CONCLUSION: Altogether, this work demonstrates the potential of gene editing as a therapeutic strategy for CF directly correcting the root cause of the disease.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Endodeoxyribonucleases/genetics , Gene Editing/methods , Cell Line , Humans , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...