Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 8133, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802282

ABSTRACT

Malaria has been one of the strongest selective forces on the human genome. The increased frequency of haemoglobinopathies, as well as numerous other blood groups, in malaria endemic regions is commonly attributed to a protective effect of these alleles against malaria. In the majority of these cases however there have been no systematic functional studies to test protective mechanisms, in large part because most host-parasite interaction assays are not quantitative or scalable. We describe the development of an erythrocyte preference assay which uses differential labelling with fluorescent dyes to distinguish invasion into four different erythrocyte populations which are all co-incubated with a single Plasmodium falciparum parasite culture. Testing this assay on erythrocytes across the ABO blood system from forty independent donors reveals for the first time that P. falciparum parasites preferentially invade group O over Group A erythrocytes. This runs counter to the known protective effect of group O against severe malaria, but emphasises the complexities of host-pathogen interactions, and the need for highly quantitative and scalable assays to systematically explore them.


Subject(s)
ABO Blood-Group System/metabolism , Erythrocytes/parasitology , Host-Parasite Interactions , Plasmodium falciparum/physiology , Erythrocytes/immunology , Erythrocytes/metabolism , Humans
2.
Proc Natl Acad Sci U S A ; 114(45): 12045-12050, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29078270

ABSTRACT

A highly effective vaccine would be a valuable weapon in the drive toward malaria elimination. No such vaccine currently exists, and only a handful of the hundreds of potential candidates in the parasite genome have been evaluated. In this study, we systematically evaluated 29 antigens likely to be involved in erythrocyte invasion, an essential developmental stage during which the malaria parasite is vulnerable to antibody-mediated inhibition. Testing antigens alone and in combination identified several strain-transcending targets that had synergistic combinatorial effects in vitro, while studies in an endemic population revealed that combinations of the same antigens were associated with protection from febrile malaria. Video microscopy established that the most effective combinations targeted multiple discrete stages of invasion, suggesting a mechanistic explanation for synergy. Overall, this study both identifies specific antigen combinations for high-priority clinical testing and establishes a generalizable approach that is more likely to produce effective vaccines.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Antibodies, Protozoan/immunology , Cell Line , Erythrocytes/immunology , Erythrocytes/parasitology , HEK293 Cells , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Prospective Studies , Protozoan Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...