Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 247: 112325, 2023 10.
Article in English | MEDLINE | ID: mdl-37479567

ABSTRACT

CYP1A1, CYP1A2, and CYP1B1 have a high degree of sequence similarity, similar substrate selectivities and induction characteristics. However, experiments suggest that there are significant differences in their quaternary structures and function. The goal of this study was to characterize the CYP1 proteins regarding their ability to form protein-protein complexes, lipid microdomain localization, and ultimately function. This was accomplished by examining (1) substrate metabolism of the CYP1s as a function of NADPH-cytochrome P450 reductase (POR) concentration, and (2) quaternary structure, using bioluminescence resonance energy transfer (BRET). Both CYP1As were able to form BRET-detectable homomeric complexes, which was not observed with CYP1B1. When activities were measured as a function of [POR], CYP1A1 and CYP1B1 showed a hyperbolic response, consistent with mass-action binding; however, CYP1A2 produced a sigmoidal response, suggesting that the homomeric complex affected its function. Differences were observed in their ability to form heteromeric complexes. Whereas CYP1B1 and CYP1A1 formed a complex, neither the CYP1A1/CYP1A2 nor the CYP1B1/CYP1A2 pair formed BRET-detectable complexes. These proteins also differed in their lipid microdomain localization, with CYP1A2 and CYP1B1 residing in ordered membranes, and CYP1A1 in the disordered lipid regions. Taken together, despite their sequence similarities, there are substantial differences in quaternary structures and microdomain localization that can influence enzymatic activities. As these proteins exist in the endoplasmic reticulum with other ER-resident proteins, the P450s need to be considered as part of multi-enzyme systems rather than simply monomeric proteins interacting with their redox partners.


Subject(s)
Cytochrome P-450 CYP1A2 , Cytochrome P450 Family 1 , Cytochrome P-450 CYP1A1 , Energy Transfer , Lipids
2.
Biochem J ; 478(2): 377-388, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33394027

ABSTRACT

P450 and heme oxygenase-1 (HO-1) receive their necessary electrons by interaction with the NADPH-cytochrome P450 reductase (POR). As the POR concentration is limiting when compared with P450 and HO-1, they must effectively compete for POR to function. In addition to these functionally required protein-protein interactions, HO-1 forms homomeric complexes, and several P450s have been shown to form complexes with themselves and with other P450s, raising the question, 'How are the HO-1 and P450 systems organized in the endoplasmic reticulum?' Recently, CYP1A2 was shown to associate with HO-1 affecting the function of both proteins. The goal of this study was to determine if CYP1A1 formed complexes with HO-1 in a similar manner. Complex formation among POR, HO-1, and CYP1A1 was measured using bioluminescence resonance energy transfer, with results showing HO-1 and CYP1A1 form a stable complex that was further stabilized in the presence of POR. The POR•CYP1A1 complex was readily disrupted by the addition of HO-1. CYP1A1 also was able to affect the POR•HO-1 complex, although the effect was smaller. This interaction between CYP1A1 and HO-1 also affected function, where the presence of CYP1A1 inhibited HO-1-mediated bilirubin formation by increasing the KmPOR•HO-1 without affecting the Vmaxapp. In like manner, HO-1 inhibited CYP1A1-mediated 7-ethoxyresorufin dealkylation by increasing the KmPOR•CYP1A1. Based on the mathematical simulation, the results could not be explained by a model where CYP1A1 and HO-1 simply compete for POR, and are consistent with the formation of a stable CYP1A1•HO-1 complex that affected the functional characteristics of both moieties.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Heme Oxygenase-1/metabolism , Bioluminescence Resonance Energy Transfer Techniques , Cytochrome P-450 CYP1A1/chemistry , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Heme Oxygenase-1/chemistry , Humans , Protein Interaction Domains and Motifs
3.
J Biol Chem ; 296: 100030, 2021.
Article in English | MEDLINE | ID: mdl-33148696

ABSTRACT

Heme oxygenase 1 (HO-1) and the cytochromes P450 (P450s) are endoplasmic reticulum-bound enzymes that rely on the same protein, NADPH-cytochrome P450 reductase (POR), to provide the electrons necessary for substrate metabolism. Although the HO-1 and P450 systems are interconnected owing to their common electron donor, they generally have been studied separately. As the expressions of both HO-1 and P450s are affected by xenobiotic exposure, changes in HO-1 expression can potentially affect P450 function and, conversely, changes in P450 expression can influence HO-1. The goal of this study was to examine interactions between the P450 and HO-1 systems. Using bioluminescence resonance energy transfer (BRET), HO-1 formed HO-1•P450 complexes with CYP1A2, CYP1A1, and CYP2D6, but not all P450s. Studies then focused on the HO-1-CYP1A2 interaction. CYP1A2 formed a physical complex with HO-1 that was stable in the presence of POR. As expected, both HO-1 and CYP1A2 formed BRET-detectable complexes with POR. The POR•CYP1A2 complex was readily disrupted by the addition of HO-1, whereas the POR•HO-1 complex was not significantly affected by the addition of CYP1A2. Interestingly, enzyme activities did not follow this pattern. BRET data suggested substantial inhibition of CYP1A2-mediated 7-ethoxyresorufin de-ethylation in the presence of HO-1, whereas its activity was actually stimulated at subsaturating POR. In contrast, HO-1-mediated heme metabolism was inhibited at subsaturating POR. These results indicate that HO-1 and CYP1A2 form a stable complex and have mutual effects on the catalytic behavior of both proteins that cannot be explained by a simple competition for POR.


Subject(s)
Cytochrome P-450 CYP1A2/metabolism , Heme Oxygenase-1/metabolism , Energy Transfer , HEK293 Cells , Heme/metabolism , Humans , Protein Binding
4.
Toxicol Appl Pharmacol ; 277(2): 200-9, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24713513

ABSTRACT

Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 µm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 µm in diameter) to 230°C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition.


Subject(s)
Chlorobenzenes/toxicity , Chlorophenols/toxicity , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/toxicity , Free Radicals/toxicity , Microsomes, Liver/drug effects , Particulate Matter/toxicity , Animals , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases/metabolism , Catalase/metabolism , Chlorobenzenes/metabolism , Chlorophenols/metabolism , Cytochrome P-450 Enzyme System/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/metabolism , Free Radicals/metabolism , Isoenzymes , Kinetics , Male , Microsomes, Liver/enzymology , Particle Size , Particulate Matter/metabolism , Rats , Rats, Sprague-Dawley , Substrate Specificity
5.
Biochemistry ; 52(23): 4003-13, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23675771

ABSTRACT

The goal of this study was to characterize the effects of CYP1A2·CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2·CYP2B4 complex in which the CYP1A2 moiety has a higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450·P450 interaction increased the rate of the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450·P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450·P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformational change in CYP1A2 that makes its metabolism more efficient.


Subject(s)
Aryl Hydrocarbon Hydroxylases/chemistry , Cytochrome P-450 CYP1A2/chemistry , NADPH-Ferrihemoprotein Reductase/chemistry , Toluene/chemistry , Animals , Cytochrome P450 Family 2 , Hydrogen Peroxide/chemistry , Kinetics , Oxidation-Reduction , Phosphatidylcholines/chemistry , Protein Binding , Rabbits , Solutions , Solvents/chemistry
6.
Biochem J ; 446(3): 489-97, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22738171

ABSTRACT

Previous studies have shown that the presence of one P450 enzyme can affect the function of another. The goal of the present study was to determine if P450 enzymes are capable of forming homomeric complexes that affect P450 function. To address this problem, the catalytic activities of several P450s were examined in reconstituted systems containing NADPH-POR (cytochrome P450 reductase) and a single P450. CYP2B4 (cytochrome P450 2B4)-, CYP2E1 (cytochrome P450 2E1)- and CYP1A2 (cytochrome P450 1A2)-mediated activities were measured as a function of POR concentration using reconstituted systems containing different concentrations of P450. Although CYP2B4-dependent activities could be explained by a simple Michaelis-Menten interaction between POR and CYP2B4, both CYP2E1 and CYP1A2 activities generally produced a sigmoidal response as a function of [POR]. Interestingly, the non-Michaelis behaviour of CYP1A2 could be converted into a simple mass-action response by increasing the ionic strength of the buffer. Next, physical interactions between CYP1A2 enzymes were demonstrated in reconstituted systems by chemical cross-linking and in cellular systems by BRET (bioluminescence resonance energy transfer). Cross-linking data were consistent with the kinetic responses in that both were similarly modulated by increasing the ionic strength of the surrounding solution. Taken together, these results show that CYP1A2 forms CYP1A2-CYP1A2 complexes that exhibit altered catalytic activity.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Animals , Bioluminescence Resonance Energy Transfer Techniques , Catalysis , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 Enzyme System/chemistry , HEK293 Cells , Humans , Kinetics , Protein Interaction Domains and Motifs , Rabbits
7.
Drug Metab Lett ; 5(1): 6-16, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20942796

ABSTRACT

Heme oxygenase-1 (HO-1) is induced in most cell types by many forms of environmental stress and is believed to play a protective role in cells exposed to oxidative stress. Metabolism by cytochromes P450 (P450) is highly inefficient as the oxidation of substrate is associated with the production of varying proportions of hydrogen peroxide and/or superoxide. This study tests the hypothesis that heme oxygenase-1 (HO-1) plays a protective role against oxidative stress by competing with P450 for binding to the common redox partner, the NADPH P450 reductase (CPR) and in the process, diminishing P450 metabolism and the associated production of reactive oxygen species (ROS). Liver microsomes were isolated from uninduced rats and rats that were treated with cadmium and/or ß-napthoflavone (BNF) to induce HO-1 and/or CYP1A2. HO-1 induction was associated with slower rates of metabolism of the CYP1A2-specific substrate, 7-ethoxyresorufin. Furthermore, HO-1 induction also was associated with slower rates of hydrogen peroxide and hydroxyl radical production by microsomes from rats induced for CYP1A2. The inhibition associated with HO-1 induction was not dependent on the addition of heme to the microsomal incubations. The effects of HO-1 induction were less dramatic in the absence of substrate for CYP1A2, suggesting that the enzyme was more effective in inhibiting the CYP1A2-related activity than the CPR-related production of superoxide (that dismutates to form hydrogen peroxide).


Subject(s)
Cytochromes/antagonists & inhibitors , Heme Oxygenase (Decyclizing)/metabolism , Liver/enzymology , Microsomes, Liver/enzymology , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Cadmium Chloride/pharmacology , Cytochrome P-450 CYP1A2 , Cytochromes/biosynthesis , Cytochromes/metabolism , Enzyme Induction , Heme/metabolism , Heme Oxygenase (Decyclizing)/biosynthesis , Hydrogen Peroxide/metabolism , Hydroxyl Radical/metabolism , In Vitro Techniques , Kinetics , Liver/drug effects , Male , Microsomes, Liver/drug effects , NADPH-Ferrihemoprotein Reductase/metabolism , Oxazines/metabolism , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Substrate Specificity , beta-Naphthoflavone/pharmacology
8.
Protein Expr Purif ; 33(1): 66-71, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14680963

ABSTRACT

Cytochrome P450 2E1 (CYP2E1) is of great interest because of its important role in the oxidation of numerous drugs and carcinogens. The yields of CYP2E1 obtained by the traditional recombinant expression systems have been relatively poor. We report here the development of a system for high-level expression of rabbit CYP2E1 in Escherichia coli strain C41 (DE3). Expression of the membrane-bound CYP2E1 by the pLW01-P450 expression plasmid, which utilizes a T7 promoter, is markedly improved by employing E. coli strain C41 (DE3). The pLW01/2E1 expression plasmid was successfully constructed and high-level expression of CYP2E1 was achieved, which ranged between 900 and 1400 nmol (liter culture)(-1). This yield was 9-14-fold higher than other reports of CYP2E1 expression in other E. coli strains. This system provides a highly efficient tool for expressing CYP2E1. An improved purification procedure for the expressed CYP2E1 involving chromatography on diethylaminoethyl cellulose (DE52), Reactive Red-agarose (type 1000-CL), and hydroxyapatite is also reported. This procedure allowed recovery of 45% of the expressed protein and CYP2E1 with a specific content of 14 nmol/mg protein, which showed a single band on a polyacrylamide gel stained with Coomassie brilliant blue.


Subject(s)
Cytochrome P-450 CYP2E1/biosynthesis , Escherichia coli/enzymology , Animals , Chromatography/methods , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/isolation & purification , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Plasmids/genetics , Rabbits , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Spectrophotometry/methods
9.
Toxicol Appl Pharmacol ; 179(2): 74-82, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11884239

ABSTRACT

Ethylbenzene (EB) effectively induces several hepatic P450 enzymes including CYP2E1 and CYP2B. Hypophysectomy diminishes the magnitude of EB-mediated induction of CYP2B. Although growth hormone (GH) plays a key role in sexual dimorphism of CYP2C11, its impact on EB-mediated P450 expression is still unknown. Because hypophysectomy leads to a depletion of multiple pituitary hormones besides GH, a study was designed to investigate the possible involvement of GH in EB-mediated hepatic P450 expression using GH-deficient dwarf rats as a more specific animal model. In these rats, pituitary GH was selectively reduced to about 10% of normal levels and other pituitary trophic hormones including thyroid-stimulating hormone, adrenocorticotropic hormone, luteinizing hormone, follicle-stimulating hormone, and prolactin are largely unchanged. Male control and HsdOla:DWARF-dw-4 (Harlan, UK) rats were subjected to a single ip injection of EB (10 mmol/kg). CYP2E1- and CYP2B-dependent activities, protein, and RNA levels were measured 10 and 24 h afterward. The results indicated that dwarf rats without EB exposure expressed higher CYP2E1. Although EB treatment induced CYP2E1 activity, protein, and mRNA both in controls and dwarf rats, the magnitude of the response to EB exposure was greater 10 h after the treatment in dwarf rats. Hypophysectomy also increased CYP2E1 protein induction by EB compared to intact rats. This effect was reversed by GH supplementation to hypophysectomized rats. Overall, responses of CYP2B to EB exposure in dwarf rats did not display basic differences from controls. In conclusion, the results demonstrate that (1) the suppression of CYP2B induction found in the multi-hormone-deficient HX rats is not found in the more specific GH-deficient rat model, confirming that GH does not have a major influence on CYP2B expression and (2) both hypophysectomized and GH-deficient rats show an altered inducibility of CYP2E1 after EB treatment.


Subject(s)
Benzene Derivatives/pharmacology , Cytochrome P-450 CYP2E1/biosynthesis , Cytochrome P-450 CYP2E1/genetics , Dwarfism, Pituitary/genetics , Growth Hormone/deficiency , Liver/enzymology , Animals , Blotting, Northern , Blotting, Western , Body Weight/genetics , Enzyme Induction/drug effects , Female , Gene Expression Regulation, Enzymologic/drug effects , Growth Hormone/genetics , Hypophysectomy , Liver/drug effects , Male , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , NADPH-Ferrihemoprotein Reductase/biosynthesis , Organ Size/genetics , Rats , Rats, Sprague-Dawley , Toluene/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...