Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Biochem Sci ; 23(5): 190-4, 1998 May.
Article in English | MEDLINE | ID: mdl-9612084

ABSTRACT

Escherichia coli adapts to changes in growth osmolarity of at least 100-fold by making large changes in the amounts of intracellular water and solutes, including cytoplasmic K+. A wide range of in vitro salt, solute and biopolymer concentrations should therefore be considered 'physiological'. Paradoxically, these large, osmotically induced changes in cytoplasmic K+ concentration do not greatly affect the equilibria and kinetics of cytoplasmic protein-nucleic acid interactions. Biophysical effects resulting from changes in the amount of cytoplasmic water (such as macromolecular crowding) and in the concentrations of other cytoplasmic solutes appear to compensate for the effects of changes in cytoplasmic K+ concentration and thereby maintain protein-nucleic acid equilibria and kinetics in the range required for in vivo function.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Escherichia coli/metabolism , Biophysical Phenomena , Biophysics , Buffers , Osmolar Concentration
2.
Biochemistry ; 34(4): 1393-404, 1995 Jan 31.
Article in English | MEDLINE | ID: mdl-7827087

ABSTRACT

As a probe of physical chemical properties of the intracellular environment, we measured 39K NMR transverse relaxation rates in concentrated cell slurries of Escherichia coli K-12 grown in minimal medium over a range of osmolarities (from 0.1 to 1.0 OsM) and after plasmolysis. The 39K transverse relaxation at a resonance frequency of approximately 18.67 MHz is biexponential under all conditions, and 100% of the expected signal intensity is detected. Both components of the 39K NMR transverse relaxation are very fast, and the difference between the fast and slow relaxation rates is very large compared to previous measurements on 23Na and 39K in protein and nucleic acid solutions in vitro. The 39K transverse relaxation rates decrease as the osmolarity of the growth media increases but increase dramatically when cells grown in 0.1 OsM media are plasmolyzed at 1.0 OsM. The homogeneous nature and the 100% visibility of the 39K signal indicate the existence of fast exchange among the multiple, magnetically distinguishable populations of 39K which probably exist in the cytoplasm. The absence of static quadrupolar splitting of the cytoplasmic 39K signal (as indicated by a single peak in the spectrum) indicates that the cytoplasm, as probed by 39K NMR, behaves like a concentrated but isotropic nucleic acid solution rather than an anisotropic nucleic acid liquid crystal. To understand the origins of the striking NMR relaxation behavior of 39K in viable cells, we have investigated NMR transverse relaxation rates of 39K (and also 23Na and 35Cl) in E. coli 50S and 70S ribosome solutions in vitro. At concentrations of ions and of ribosomes that to the extent possible mimic those of the cytoplasm of E. coli, we find that 39K, 23Na, and 35Cl transverse relaxation rates all exhibit biexponential behavior, and 39K and 23Na exhibit the large magnitudes and the large difference between the slow and the fast relaxation rates observed in viable cells. These polyanionic ribosome solutions are the only in vitro model system discovered to date that exhibits 39K transverse relaxation rates comparable to those in viable cells. We conclude that K(+)-ribosome interactions are the dominant source of the NMR properties of K+ in E. coli.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Escherichia coli/metabolism , Potassium/metabolism , Ribosomes/metabolism , Cytoplasm , Magnetic Resonance Spectroscopy , Motion
3.
J Bacteriol ; 174(5): 1586-95, 1992 Mar.
Article in English | MEDLINE | ID: mdl-1537801

ABSTRACT

The amounts of cytoplasmic water and of all osmotically significant cytoplasmic solutes were determined for Escherichia coli K-12 grown in 3-(N-morpholino)propane sulfonate (MOPS)-buffered glucose-minimal medium containing 0.5 M NaCl in the presence and absence of the osmoprotectants betaine and proline. The goal of this work is to correlate the effects of osmoprotectants on the composition of the cytoplasm with their ability to increase the growth rate of osmotically stressed cells. At a concentration of 1 mM in the growth medium, betaine increases the growth rate more than does proline; choline, which is converted to betaine by E. coli, appears to have an intermediate effect on growth rate. The accumulation of either betaine or proline reduces the cytoplasmic amounts of K+, glutamate, trehalose, and MOPS (the major cytoplasmic osmolytes accumulated in the absence of osmoprotectants), so that at this external osmolarity the total amount of cytoplasmic solutes is essentially the same in the presence or absence of either osmoprotectant. More betaine than proline is accumulated, so the extent of replacement of cytoplasmic solutes is greater for betaine than for proline. Accumulation of these osmoprotectants is accompanied by a large (20 to 50%) increase in the volume of cytoplasmic water per unit of cell dry weight (Vcyto). This effect, which appears to result from an increase in the volume of free water, Vf (as opposed to water of hydration, or bound water), is greater for betaine than for proline. Taken together, these results indicate that the molar effects of betaine and proline on water activity and on the osmotic pressure of the cytoplasm must be significantly larger than those of the solutes they replace. Cayley et al. (S. Cayley, B. A. Lewis, H. J. Guttman, and M. T. Record, Jr., J. Mol. Biol. 222:281-300, 1991) observed that, in cells grown in the absence of osmoprotectants, both growth rate and Vcyto decreased, whereas the amount of cytoplasmic K+ (nK+) increased, with increasing external osmolarity. We predicted that the observed changes in nK+ and Vcyto would have large and approximately compensating effects on key protein-nucleic acid interactions of gene expression, and we proposed that Vf was the fundamental determinant of growth rate in osmotically stressed cells. The properties of cells cultured in the presence of betaine and proline appear completely consistent with our previous work and proposals. Accumulation of betaine and, to a lesser extent, proline shifts the set of linked physiological parameters (nK+, Vcyto, growth rate) to those characteristic of growth at lower osmolarity in the absence of osmoprotectants. Models for the thermodynamic basis and physiological consequences of the effect of osmoprotectants on Vcyto and Vf are discussed.


Subject(s)
Betaine/pharmacology , Cytoplasm/physiology , Escherichia coli/physiology , Osmotic Pressure/drug effects , Proline/pharmacology , Biological Transport/drug effects , Biological Transport/physiology , Cell Division/drug effects , Cell Division/physiology , Choline/pharmacology , Culture Media/pharmacology , Cytoplasm/chemistry , Cytoplasm/drug effects , Escherichia coli/cytology , Escherichia coli/drug effects , Glutamates/metabolism , Models, Biological , Morpholines/metabolism , Osmosis , Potassium/metabolism , Trehalose/metabolism
4.
J Mol Biol ; 222(2): 281-300, 1991 Nov 20.
Article in English | MEDLINE | ID: mdl-1960728

ABSTRACT

The water-accessible volumes, the amounts of all significant osmolytes, and the protein concentration in the cytoplasm of aerobically grown Escherichia coli K-12 have been determined as a function of the osmolarity of the minimal growth medium. The volume of cytoplasmic water (Vcyto) decreases linearly with increasing osmolarity from 2.23(+/- 0.12) microliters/mg dry weight in cells grown at 0.10 OSM to 1.18(+/- 0.06) microliters/mg dry weight at 1.02 OSM. Above 0.28 OSM, growth rate decreases linearly with increasing osmolarity. The growth rate extrapolates to zero at an osmolarity of approximately 1.8, corresponding to an estimated Vcyto of 0.5(+/- 0.2) microliters/mg dry weight. Measurements of Vcyto in titrations of non-growing cells with the plasmolyzing agent NaCl were used to obtain volumes of "bound" water (presumably water of macromolecular hydration) and cytoplasmic osmotic coefficients for cells grown in medium of low (0.10 OSM) and moderate (0.28 OSM) osmolarity. The volume of bound water Vb is similar in the two osmotic conditions (Vb = 0.40(+/- 0.04) microliters/mg dry wt), and corresponds to approximately 0.5 g H2O/g cytoplasmic macromolecule. Since Vcyto decreases with increasing osmolarity, whereas Vb appears to be independent of osmolarity, water of hydration becomes a larger fraction of Vcyto as the osmolarity of the growth medium increases. Growth appears to cease at the osmolarity where Vcyto is approximately equal to Vb. K+ and glutamate (Glu-) are the only significant cytoplasmic osmolytes in cells grown in medium of low osmolarity. The amount of K+ greatly exceeds that of Glu-. Analysis of cytoplasmic electroneutrality indicates that the cytoplasm behaves like a concentrated solution of the K+ salt of cytoplasmic polyanions, in which the amount of additional electrolyte (K+ Glu-) increases with increasing osmolarity. As the osmolarity of the growth medium becomes very low, the cytoplasm approaches an electrolyte-free K+-polyanion solution. In vivo osmotic coefficients were determined from the variation of Vcyto with external osmolarity in plasmolysis titrations of non-growing cells. The values obtained (phi = 0.54(+/- 0.06) for cells grown at 0.10 OSM and phi = 0.71(+/- 0.11) at 0.28 OSM) indicate a high degree of non-ideality of intracellular ions arising from coulombic interactions between K+ and cytoplasmic polyanions. Analysis of these osmotic coefficients using polyelectrolyte theory indicates that the thermodynamic activity of cytoplasmic K+ increases from approximately 0.14 M in cells grown at an external osmolarity of 0.10 OSM to approximately 0.76 M at 1.02 OSM.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Escherichia coli/physiology , Water-Electrolyte Balance , Biophysical Phenomena , Biophysics , Cell Division , Culture Media , Cytoplasm/physiology , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Ions , Thermodynamics , Water/metabolism
5.
J Bacteriol ; 171(7): 3597-602, 1989 Jul.
Article in English | MEDLINE | ID: mdl-2661527

ABSTRACT

We found that exogenous morpholinopropanesulfonate (MOPS) is concentrated approximately fivefold in the free volume of the cytoplasm of Escherichia coli K-12 (strain MG1665) when grown at high osmolarity (1.1 OsM) in two different media containing 40 mM MOPS. MOPS was not accumulated by E. coli grown in low-osmolarity MOPS-buffered medium or in 1.1 OsM MOPS-buffered medium containing the osmoprotectant glycine betaine. Salmonella typhimurium LT2 did not accumulate MOPS under any condition examined. We infer that accumulation of MOPS by E. coli K-12 is not due to passive equilibration but rather to transport, possibly involving an as yet uncharacterized porter not present in S. typhimurium. Glutamate and MOPS were the only anionic osmolytes we observed by 13C nuclear magnetic resonance in E. coli K-12 grown in MOPS-buffered medium. The increase in positive charge accompanying the increase in the steady-state amount of K+ in cells shifted from low to high external osmolarity appeared to be compensated for by changes in the amounts of putrescine, glutamate, and MOPS. MOPS is not an osmoprotectant, because its accumulation did not increase cell growth rate.


Subject(s)
Escherichia coli/metabolism , Morpholines/metabolism , Betaine/pharmacology , Buffers/metabolism , Culture Media , Cytoplasm/metabolism , Escherichia coli/drug effects , Escherichia coli/growth & development , Macromolecular Substances , Magnetic Resonance Spectroscopy , Osmolar Concentration , Salmonella typhimurium/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...