Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 188(17): 6115-23, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16923878

ABSTRACT

The first in vivo measurements of a protein diffusion coefficient versus cytoplasmic biopolymer volume fraction are presented. Fluorescence recovery after photobleaching yields the effective diffusion coefficient on a 1-mum-length scale of green fluorescent protein within the cytoplasm of Escherichia coli grown in rich medium. Resuspension into hyperosmotic buffer lacking K+ and nutrients extracts cytoplasmic water, systematically increasing mean biopolymer volume fraction, , and thus the severity of possible crowding, binding, and confinement effects. For resuspension in isosmotic buffer (osmotic upshift, or Delta, of 0), the mean diffusion coefficient, , in cytoplasm (6.1 +/- 2.4 microm2 s(-1)) is only 0.07 of the in vitro value (87 microm2 s(-1)); the relative dispersion among cells, sigmaD/ (standard deviation, sigma(D), relative to the mean), is 0.39. Both and sigmaD/ remain remarkably constant over the range of Delta values of 0 to 0.28 osmolal. For a Delta value of > or =0.28 osmolal, formation of visible plasmolysis spaces (VPSs) coincides with the onset of a rapid decrease in by a factor of 380 over the range of Delta values of 0.28 to 0.70 osmolal and a substantial increase in sigmaD/. Individual values of D vary by a factor of 9 x 10(4) but correlate well with f(VPS), the fractional change in cytoplasmic volume on VPS formation. The analysis reveals two levels of dispersion in D among cells: moderate dispersion at low Delta values for cells lacking a VPS, perhaps related to variation in phi or biopolymer organization during the cell cycle, and stronger dispersion at high Delta values related to variation in f(VPS). Crowding effects alone cannot explain the data, nor do these data alone distinguish crowding from possible binding or confinement effects within a cytoplasmic meshwork.


Subject(s)
Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Biological Transport , Buffers , Culture Media , Diffusion , Escherichia coli/growth & development , Osmosis
2.
J Mol Recognit ; 17(5): 488-96, 2004.
Article in English | MEDLINE | ID: mdl-15362109

ABSTRACT

From determination of amounts and concentrations of biopolymers and solutes in the cytoplasm of Escherichia coli, we are obtaining information needed to assess the effect of macromolecular crowding on cytoplasmic properties and processes of osmotically stressed bacteria. We observe that growth rate, and the amount of cytoplasmic water decrease and cytoplasmic concentrations of biopolymers and K+, increase with increasing osmolality, even for cells grown in the presence of osmoprotectants like glycine betaine. We observe general correlations between the amount of cytoplasmic water, growth rate and cytoplasmic K+ concentration in osmotically stressed cells grown both with and without osmoprotectants. To explain these correlations, we propose that crowding increases with increasing growth osmolality, which in turn buffers the binding of proteins to nucleic acids against changes in cytoplasmic K+ concentration and (by affecting biopolymer diffusion rates and/or assembly equilibria) is a determinant of growth rate of osmotically stressed cells. Changes in biopolymer concentration and crowding may also explain the increase of the activity coefficient of cytoplasmic water with increasing osmolality of growth in E. coli.


Subject(s)
Cytoplasm/metabolism , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli K12/chemistry , Escherichia coli K12/growth & development , Escherichia coli Proteins/metabolism , Betaine/pharmacology , Biopolymers/metabolism , Cytoplasm/drug effects , Escherichia coli K12/physiology , Osmolar Concentration , Osmotic Pressure , Protein Structure, Tertiary
3.
Biochemistry ; 42(43): 12596-609, 2003 Nov 04.
Article in English | MEDLINE | ID: mdl-14580206

ABSTRACT

To better understand the biophysical basis of osmoprotection by glycine betaine (GB) and the roles of cytoplasmic osmolytes, water, and macromolecular crowding in the growth of osmotically stressed Escherichia coli, we have determined growth rates and amounts of GB, K(+), trehalose, biopolymers, and water in the cytoplasm of E. coli K-12 grown over a wide range of high external osmolalities (1.02-2.17 Osm) in MOPS-buffered minimal medium (MBM) containing 1 mM betaine (MBM+GB). As osmolality increases, we observe that the amount of cytoplasmic GB increases, the amounts of K(+) (the other major cytoplasmic solute) and of biopolymers remain relatively constant, and the growth rate and the amount of cytoplasmic water decrease strongly, so concentrations of biopolymers and all solutes increase with increasing osmolality. We observe the same correlation between the growth rate and the amount of cytoplasmic water for cells grown in MBM+GB as in MBM, supporting our proposal that the amount of cytoplasmic water is a primary determinant of the growth rate of osmotically stressed cells. We also observe the same correlation between cytoplasmic concentrations of biopolymers and K(+) for cells grown in MBM and MBM+GB, consistent with our hypothesis of compensation between the anticipated large perturbing effects on cytoplasmic protein-DNA interactions of increases in cytoplasmic concentrations of K(+) and biopolymers (crowding) with increasing osmolality. For growth conditions where the amount of cytoplasmic water is relatively large, we find that cytoplasmic osmolality is adequately predicted by assuming that contributions of individual solutes to osmolality are additive and using in vitro osmotic data on osmolytes and a local bulk domain model for cytoplasmic water. At moderate growth osmolalities (up to 1 Osm), we conclude that GB is an efficient osmoprotectant because it is almost as excluded from the biopolymer surface in the cytoplasm as it is from native protein surface in vitro. At very high growth osmolalities where cells contain little cytoplasmic water, predicted cytoplasmic osmolalities greatly exceed observed osmolalities, and the efficiency of GB as an osmolality booster decreases as the amount of cytoplasmic water decreases.


Subject(s)
Betaine/pharmacology , Cytoplasm/metabolism , Escherichia coli/metabolism , Water/metabolism , Escherichia coli/growth & development , Osmotic Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...