Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 295: 113035, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34167061

ABSTRACT

Several industrial wastes including biomass, fly ashes, red mud, mill scales, water treatment residues, have significant concentrations of metal oxides: Fe2O3, Al2O3, TiO2, SiO2 etc. Several efforts have been made towards recovering metals within these wastes. Rather than recovering one metal at a time, we report a novel approach for simultaneously extracting multiple metals from mixed oxides in a single process step. Using three distinct furnaces/heating regimes, the carbothermic reduction of Fe2O3/Al2O3/SiO2 system was investigated at 1450-1700 °C for up to 2 h over a wide composition range. Complete reduction was achieved for both Fe2O3 and SiO2 in all cases leading to the formation of Fe and Fe-Si alloys. The reduction of alumina at moderate temperatures was the key challenge. No alumina reduction was observed during reductions at 1450 °C. A partial reduction of alumina and the formation of Fe-Al alloys was detected in the Al2O3/Fe2O3/C system at 1550 °C. The formation of Fe-Si-Al alloys was also observed in the Fe2O3/SiO2/Al2O3/C system at 1550 °C. Complete reduction of alumina was observed at 1600-1700 °C, even for up to 50 wt% alumina in the system. Optimal operating conditions and reference standards were established for the simultaneous recovery of multiple metals from waste oxides. While conserving natural resources, this novel route will lower the burden on waste storage facilities with significant contributions to the economic and environmental sustainability of industrial waste management.


Subject(s)
Industrial Waste , Iron , Aluminum Oxide , Coal Ash , Industrial Waste/analysis , Silicon Dioxide
2.
Waste Manag ; 73: 556-565, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28089398

ABSTRACT

High temperature pyrolysis investigations were carried out on waste printed circuit boards (PCBs) in the temperature range 800-1000°C under inert conditions, with an aim to determine optimal operating conditions for the recovery of copper. Pyrolysis residues were characterized using ICP-OES analysis, SEM/EDS and XRD investigations. Copper foils were successfully recovered after pyrolysis at 800°C for 10-20 min; the levels of Pb and Sn present were found to be quite low and these were generally present near the foil edges. The relative proportions of Pb and Sn became progressively higher at longer heating times due to enhanced diffusion of these molten metals in solid copper. While a similar behaviour was observed at 900°C, the pyrolysis at 1000°C resulted in copper forming Cu-Sn-Pb alloys; copper foils could no longer be recovered. Optimal conditions were identified for the direct recovery of copper from waste PCBs with minimal processing. This approach is expected to make significant contributions towards enhancing material recovery, process efficiency and the environmental sustainability of recycling e-waste. Pyrolysis at lower temperatures, short heating times, coupled with reductions in process steps are expected to significantly reduce energy consumption and pollution associated with the handling and processing of waste PCBs.


Subject(s)
Copper , Electronic Waste , Recycling , Alloys , Computers , Temperature
3.
Waste Manag ; 78: 602-610, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32559951

ABSTRACT

An in-depth investigation was carried out on the recovery of rare earth elements (REEs) from a variety of waste printed circuit boards (PCBs). High temperature pyrolysis was carried out at 850 °C for 15 min using horizontal resistance and thermal plasma furnaces with different levels of turbulence. The concentration of REEs in key pyrolysis residues, namely, copper rich red metallic fraction, lead/tin rich white metallic fraction and slag rich carbonaceous residues, were determined using ICP analysis. Most of the REEs were found concentrated in the carbonaceous residue with negligible levels of REEs recovered in the two metallic fractions. Most of the recovered REEs showed a high affinity towards to refractory oxides silica and alumina, and little affinity towards metals Cu, Pb and Sn. The yield of REEs was significantly higher from the plasma furnace indicating the important role of turbulence in the dissociation & subsequent diffusion of REEs during pyrolysis. While La, Pr, Sm and Y required turbulent conditions for their recovery, Nd, Gd, Ce and Dy were relatively easy to dissociate and extract from the waste. Significant amounts of REEs could thus be recovered from waste PCBs as concentrated recyclates for further processing and extraction of individual rare earths. This study has shown that PCBs could prove to be a valuable urban mining resource of REEs. The recovery of REEs, in addition to precious and other metals, could play an important role towards enhancing the economic and environmental sustainability of e-waste recycling.

4.
Waste Manag ; 64: 182-189, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28285732

ABSTRACT

A novel approach is presented to capture some of the potentially toxic elements (PTEs), other particulates and emissions during the heat treatment of e-waste using alumina adsorbents. Waste PCBs from mobile phones were mechanically crushed to sizes less than 1mm; their thermal degradation was investigated using thermo-gravimetric analysis. Observed weight loss was attributed to the degradation of polymers and the vaporization of organic constituents and volatile metals. The sample assembly containing PCB powder and adsorbent was heat treated at 600°C for times ranging between 10 and 30min with air, nitrogen and argon as carrier gases. Weight gains up to ∼17% were recorded in the adsorbent thereby indicating the capture of significant amounts of particulates. The highest level of adsorption was observed in N2 atmosphere for small particle sizes of alumina. SEM/EDS results on the adsorbent indicated the presence of Cu, Pb, Si, Mg and C. These studies were supplemented with ICP-OES analysis to determine the extent of various species captured as a function of operating parameters. This innovative, low-cost approach has the potential for utilization in the informal sector and/or developing countries, and could play a significant role in reducing toxic emissions from e-waste processing towards environmentally safe limits.


Subject(s)
Air Pollution/prevention & control , Electronic Waste , Refuse Disposal/methods , Adsorption , Atmosphere , Hot Temperature , Incineration , Temperature
5.
Waste Manag ; 57: 121-130, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26712661

ABSTRACT

The rapid growth of electronic devices, their subsequent obsolescence and disposal has resulted in electronic waste (e-waste) being one of the fastest increasing waste streams worldwide. The main component of e-waste is printed circuit boards (PCBs), which contain substantial quantities of precious metals in concentrations significantly higher than those typically found in corresponding ores. The high value and limited reserves of minerals containing these metals makes urban mining of precious metals very attractive. This article is focused on the concentration and recovery of precious metals during pyro-metallurgical recycling of waste PCBs. High temperature pyrolysis was carried out for ten minutes in a horizontal tube furnace in the temperature range 800-1350°C under Argon gas flowing at 1L/min. These temperatures were chosen to lie below and above the melting point (1084.87°C) of copper, the main metal in PCBs, to study the influence of its physical state on the recovery of precious metals. The heat treatment of waste PCBs resulted in two different types of solid products, namely a carbonaceous non-metallic fraction (NMFs) and metallic products, composed of copper rich foils and/or droplets and tin-lead rich droplets and some wires. Significant proportions of Ag, Au, Pd and Pt were found concentrated within two types of metallic phases, with very limited quantities retained by the NMFs. This process was successful in concentrating several precious metals such as Ag, Au, Pd and Pt in a small volume fraction, and reduced volumes for further processing/refinement by up to 75%. The amounts of secondary wastes produced were also minimised to a great extent. The generation of precious metals rich metallic phases demonstrates high temperature pyrolysis as a viable approach towards the recovery of precious metals from e-waste.


Subject(s)
Electronic Waste , Metallurgy/methods , Metals/isolation & purification , Recycling/methods , Ceramics , Copper/chemistry , Gold/isolation & purification , Palladium/isolation & purification , Platinum/isolation & purification , Silver/isolation & purification
6.
Waste Manag ; 34(10): 1783-92, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25052340

ABSTRACT

The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150°C under argon gas flowing at 1L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally sustainable solution to the management of waste products.


Subject(s)
Copper/chemistry , Electronic Waste/analysis , Polychlorinated Biphenyls/chemistry , Recycling/methods , Waste Management/methods , Lead/chemistry , Tin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...