Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
HGG Adv ; 4(4): 100241, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37742071

ABSTRACT

Alzheimer disease (AD) is the most common type of dementia and is estimated to affect 6 million Americans. Risk for AD is multifactorial, including both genetic and environmental risk factors. AD genomic research has generally focused on identification of risk variants. Using this information, polygenic risk scores (PRSs) can be calculated to quantify an individual's relative disease risk due to genetic factors. The Amish are a founder population descended from German and Swiss Anabaptist immigrants. They experienced a genetic bottleneck after arrival in the United States, making their genetic architecture different from the broader European ancestry population. Prior work has demonstrated the lack of transferability of PRSs across populations. Here, we compared the performance of PRSs derived from genome-wide association studies (GWASs) of Amish individuals to those derived from a large European ancestry GWAS. Participants were screened for cognitive impairment with further evaluation for AD. Genotype data were imputed after collection via Illumina genotyping arrays. The Amish individuals were split into two groups based on the primary site of recruitment. For each group, GWAS was conducted with account for relatedness and adjustment for covariates. PRSs were then calculated using weights from the other Amish group. PRS models were evaluated with and without covariates. The Amish-derived PRSs distinguished between dementia status better than the European-derived PRS in our Amish populations and demonstrated performance improvements despite a smaller training sample size. This work highlighted considerations for AD PRS usage in populations that cannot be adequately described by basic race/ethnicity or ancestry classifications.


Subject(s)
Alzheimer Disease , Humans , United States , Alzheimer Disease/epidemiology , Genetic Risk Score , Genome-Wide Association Study , Risk Factors , Amish
2.
Alzheimer Dis Assoc Disord ; 37(3): 195-199, 2023.
Article in English | MEDLINE | ID: mdl-37561946

ABSTRACT

BACKGROUND: Verbal and visuospatial memory impairments are common to Alzheimer disease and Related Dementias (ADRD), but the patterns of decline in these domains may reflect genetic and lifestyle influences. The latter may be pertinent to populations such as the Amish who have unique lifestyle experiences. METHODS: Our data set included 420 Amish and 401 CERAD individuals. Sex-adjusted, age-adjusted, and education-adjusted Z-scores were calculated for the recall portions of the Constructional Praxis Delay (CPD) and Word List Delay (WLD). ANOVAs were then used to examine the main and interaction effects of cohort (Amish, CERAD), cognitive status (case, control), and sex on CPD and WLD Z-scores. RESULTS: The Amish performed better on the CPD than the CERAD cohort. In addition, the difference between cases and controls on the CPD and WLD were smaller in the Amish and Amish female cases performed better on the WLD than the CERAD female cases. DISCUSSION: The Amish performed better on the CPD task, and ADRD-related declines in CPD and WLD were less severe in the Amish. In addition, Amish females with ADRD may have preferential preservation of WLD. This study provides evidence that the Amish exhibit distinct patterns of verbal and visuospatial memory loss associated with aging and ADRD.


Subject(s)
Alzheimer Disease , Humans , Female , Alzheimer Disease/genetics , Amish , Neuropsychological Tests , Memory , Mental Recall , Memory Disorders
3.
Alzheimers Dement ; 19(2): 611-620, 2023 02.
Article in English | MEDLINE | ID: mdl-35490390

ABSTRACT

INTRODUCTION: Studies of cognitive impairment (CI) in Amish communities have identified sibships containing CI and cognitively unimpaired (CU) individuals. We hypothesize that CU individuals may carry protective alleles delaying age at onset (AAO) of CI. METHODS: A total of 1522 individuals screened for CI were genotyped. The outcome studied was AAO for CI individuals or age at last normal exam for CU individuals. Cox mixed-effects models examined association between age and single nucleotide variants (SNVs). RESULTS: Three SNVs were significantly associated (P < 5 × 10-8 ) with AAO on chromosomes 6 (rs14538074; hazard ratio [HR] = 3.35), 9 (rs534551495; HR = 2.82), and 17 (rs146729640; HR = 6.38). The chromosome 17 association was replicated in the independent National Institute on Aging Genetics Initiative for Late-Onset Alzheimer's Disease dataset. DISCUSSION: The replicated genome-wide significant association with AAO on chromosome 17 is located in the SHISA6 gene, which is involved in post-synaptic transmission in the hippocampus and is a biologically plausible candidate gene for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/genetics , Genome-Wide Association Study , Genotype , Cognitive Dysfunction/genetics , Polymorphism, Single Nucleotide
4.
medRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168325

ABSTRACT

INTRODUCTION: Alzheimer disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age. METHODS: Genome-wide association and linkage analyses were performed on 946 examined and sampled Amish individuals, aged 76-95, who were either cognitively unimpaired (CU) or impaired (CI). RESULTS: 12 SNPs demonstrated suggestive association (P≤5×10-4) with cognitive preservation. Genetic linkage analyses identified >100 significant (LOD≥3.3) SNPs, some which overlapped with the association results. Only one locus on chromosome 2 retained significance across multiple analyses. DISCUSSION: A novel significant result for cognitive preservation on chromosome 2 includes the genes LRRTM4 and CTNNA2. Additionally, the lead SNP, rs1402906, impacts the POU3F2 transcription factor binding affinity, which regulates LRRTM4 and CTNNA2.

5.
HGG Adv ; 3(3): 100114, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35599847

ABSTRACT

Alzheimer disease (AD) is the most common type of dementia and is currently estimated to affect 6.2 million Americans. It ranks as the sixth leading cause of death in the United States, and the proportion of deaths due to AD has been increasing since 2000, while the proportion of many other leading causes of deaths have decreased or remained constant. The risk for AD is multifactorial, including genetic and environmental risk factors. Although APOE ε4 remains the largest genetic risk factor for AD, more than 26 other loci have been associated with AD risk. Here, we recruited Amish adults from Ohio and Indiana to investigate AD risk and protective genetic effects. As a founder population that typically practices endogamy, variants that are rare in the general population may be of a higher frequency in the Amish population. Since the Amish have a slightly lower incidence and later age of onset of disease, they represent an excellent and unique population for research on protective genetic variants. We compared AD risk in the Amish and to a non-Amish population through APOE genotype, a non-APOE genetic risk score of genome-wide significant variants, and a non-APOE polygenic risk score considering all of the variants. Our results highlight the lesser relative impact of APOE and differing genetic architecture of AD risk in the Amish compared to a non-Amish, general European ancestry population.

6.
J Alzheimers Dis ; 79(1): 451-458, 2021.
Article in English | MEDLINE | ID: mdl-33285633

ABSTRACT

BACKGROUND: Lower education has been reported to be associated with dementia. However, many studies have been done in settings where 12 years of formal education is the standard. Formal schooling in the Old Order Amish communities (OOA) ends at 8th grade which, along with their genetic homogeneity, makes it an interesting population to study the effect of education on cognitive impairment. OBJECTIVE: The objective of this study was to examine the association of education with cognitive function in individuals from the OOA. We hypothesized that small differences in educational attainment at lower levels of formal education were associated with risk for cognitive impairment. METHODS: Data of 2,426 individuals from the OOA aged 54-99 were analyzed. The Modified Mini-Mental State Examination (3MS-R) was used to classify participants as CI or normal. Individuals were classified into three education categories: <8, 8, and >8 years of education. To measure the association of education with cognitive status, a logistic regression model was performed adding age and sex as covariates. RESULTS: Our results showed that individuals who attained lowest levels of education (<8 and 8) had a higher probability of becoming cognitvely impaired compared with people attending >8 years (OR = 2.96 and 1.85). CONCLUSION: Even within a setting of low levels of formal education, small differences in educational attainment can still be associated with the risk of cognitive impairment. Given the homogeneity of the OOA, these results are less likely to be biased by differences in socioeconomic backgrounds.


Subject(s)
Amish/statistics & numerical data , Cognitive Dysfunction/epidemiology , Educational Status , Aged , Aged, 80 and over , Female , Humans , Logistic Models , Male , Middle Aged
7.
Ophthalmology ; 123(12): 2537-2544, 2016 12.
Article in English | MEDLINE | ID: mdl-27771146

ABSTRACT

PURPOSE: To evaluate the heritability of choroidal thickness and its relationship to age-related macular degeneration (AMD). DESIGN: Cohort study. PARTICIPANTS: Six hundred eighty-nine individuals from Amish families with early or intermediate AMD. METHODS: Ocular coherence tomography was used to quantify choroidal thickness, and fundus photography was used to classify eyes into categories using a modified Clinical Age-Related Maculopathy Staging (CARMS) system. Repeatability and heritability of choroidal thickness and its phenotypic and genetic correlations with the AMD phenotype (CARMS category) were estimated using a generalized linear mixed model (GLMM) approach that accounted for relatedness, repeated measures (left and right eyes), and the effects of age, gender, and refraction. MAIN OUTCOME MEASURES: Heritability of choroidal thickness and its phenotypic and genetic correlation with the AMD phenotype (CARMS category). RESULTS: Phenotypic correlation between choroidal thickness and CARMS category was moderate (Spearman's rank correlation, rs = -0.24; n = 1313 eyes) and significant (GLMM posterior mean, -4.27; 95% credible interval [CI], -7.88 to -0.79; P = 0.02) after controlling for relatedness, age, gender, and refraction. Eyes with advanced AMD had thinner choroids than eyes without AMD (posterior mean, -73.8; 95% CI, -94.7 to -54.6; P < 0.001; n = 1178 eyes). Choroidal thickness was highly repeatable within individuals (repeatability, 0.78; 95% CI, 0.68 to 0.89) and moderately heritable (heritability, 0.40; 95% CI, 0.14 to 0.51), but did not show significant genetic correlation with CARMS category, although the effect size was moderate (genetic correlation, -0.18; 95% CI, -0.49 to 0.16). Choroidal thickness also varied with age, gender, and refraction. The CARMS category showed moderate heritability (heritability, 0.49; 95% CI, 0.26 to 0.72). CONCLUSIONS: We quantify the heritability of choroidal thickness for the first time, highlighting a heritable, quantitative trait that is measurable in all individuals regardless of AMD affection status, and moderately phenotypically correlated with AMD severity. Choroidal thickness therefore may capture variation not captured by the CARMS system. However, because the genetic correlation between choroidal thickness and AMD severity was not significant in our data set, genes associated with the 2 traits may not overlap substantially. Future studies should therefore test for genetic variation associated with choroidal thickness to determine the overlap in genetic basis with AMD.


Subject(s)
Amish/genetics , Choroid/pathology , Quantitative Trait, Heritable , Adult , Aged , Aged, 80 and over , Choroid/diagnostic imaging , Cohort Studies , Female , Humans , Macular Degeneration/genetics , Male , Middle Aged , Organ Size/genetics , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...