Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 4759, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413702

ABSTRACT

Coastal zones with dense populations, low elevations and/or inadequate adaptive capacity are on the frontline of unprecedented impacts from climate change. The Gulf of Guinea (GoG), stretching from Liberia to Gabon, is in particular vulnerable to coastal flooding caused by local and/or climate-induced sea level rise. In this region, interannual to decadal coastal sea level changes remain poorly understood, mainly due to a lack of tide gauge stations. Here we use nearly three decades (1993-2021) of satellite altimetry data to study the link between the Equatorial Atlantic and coastal GoG sea level variability. The rate of mean sea level rise increased from 3.47 to 3.89 ± 0.10 mm/yr from the Equatorial oceanic domain to the GoG coastal area, with an acceleration of 0.094 ± 0.050 mm/yr2. This corresponds to a mean sea level rise of about 8.9 cm over the entire altimetry period, 1993-2021. We focus on the (extreme) warm/cold events that occur in both the GoG during Atlantic Niños, and along the Angola-Namibia coast during Benguela Niños. Both events are driven by remote forcing via equatorial Kelvin waves and local forcing by local winds, freshwater fluxes and currents intensifications. Analysis of altimetry-based sea level, sea surface temperature anomalies, 20 °C isotherm based PIRATA moorings, and the Argo-based steric and thermometric sea level allows us to follow the coastal trapped waves (CTWs) along the GoG, and its link with major events observed along the strong Equatorial Atlantic warmings in 2010, 2012, 2019 and 2021. Both 2019 and 2021 warming have been identified as the warmest event ever reported in this region during the last 40 years. A lag of 1 month is observed between equatorial and West African coastal trapped wave propagation. This observation may help to better anticipate and manage the effects of extreme events on local ecosystems, fisheries, and socio-economic activities along the affected coastlines. In order to enable informed decision-making and guarantee the resilience of coastal communities in the face of climate change, it emphasises the significance of ongoing study in this field.

3.
Nat Commun ; 13(1): 6410, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302781

ABSTRACT

Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs). When compounded by marine heatwaves, HEXs have larger ecological and societal impact. Here we combine observations with model simulations, to investigate the HEXs and Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in recent decades. We find that anthropogenic sea level rise combined with decadal climate variability causes increased occurrence of HEXs during 2010-2017. Both HEXs and CHHEXs are driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs, which occur during December-March, downwelling favorable northwest monsoon winds are enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña weaken the southeasterlies and cooling from coastal upwelling during May-June and November-December. Our findings emphasize the important interplay between anthropogenic warming and climate variability in affecting regional extremes.


Subject(s)
El Nino-Southern Oscillation , Wind , Seasons , Indonesia , Indian Ocean
4.
Proc Math Phys Eng Sci ; 478(2261): 20220049, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35645600

ABSTRACT

Sea-level variations spread over a very broad spectrum of spatial and temporal scales as a result of complex processes occurring in the Earth System in response to natural variability of the climate system, as well as to external forcing due to natural phenomena and anthropogenic factors. Here, we address contemporary sea-level changes, focusing on the satellite altimetry era (since the early 1990s), for which various observing systems from space and in situ allow precise monitoring of sea-level variations from global to local scales, as well as improved understanding of the components responsible for the observed variations. This overview presents the most recent results on observed global and regional sea-level changes and on associated causes, focusing on the interannual to decadal time scale. Recent progress in measuring sea level at the coast are presented. Finally, a summary of the most recent sea-level projections from the Intergovernmental Panel on Climate Change is also provided.

5.
Surv Geophys ; 43(1): 305-345, 2022.
Article in English | MEDLINE | ID: mdl-35535258

ABSTRACT

Time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions have opened up a new avenue of opportunities for studying large-scale mass redistribution and transport in the Earth system. Over the past 19 years, GRACE/GRACE-FO time-variable gravity measurements have been widely used to study mass variations in different components of the Earth system, including the hydrosphere, ocean, cryosphere, and solid Earth, and significantly improved our understanding of long-term variability of the climate system. We carry out a comprehensive review of GRACE/GRACE-FO satellite gravimetry, time-variable gravity fields, data processing methods, and major applications in several different fields, including terrestrial water storage change, global ocean mass variation, ice sheets and glaciers mass balance, and deformation of the solid Earth. We discuss in detail several major challenges we need to face when using GRACE/GRACE-FO time-variable gravity measurements to study mass changes, and how we should address them. We also discuss the potential of satellite gravimetry in detecting gravitational changes that are believed to originate from the deep Earth. The extended record of GRACE/GRACE-FO gravity series, with expected continuous improvements in the coming years, will lead to a broader range of applications and improve our understanding of both climate change and the Earth system.

6.
Nature ; 549(7672): 334, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28933433
8.
Ann Rev Mar Sci ; 5: 21-46, 2013.
Article in English | MEDLINE | ID: mdl-22809188

ABSTRACT

Regional sea level changes can deviate substantially from those of the global mean, can vary on a broad range of timescales, and in some regions can even lead to a reversal of long-term global mean sea level trends. The underlying causes are associated with dynamic variations in the ocean circulation as part of climate modes of variability and with an isostatic adjustment of Earth's crust to past and ongoing changes in polar ice masses and continental water storage. Relative to the coastline, sea level is also affected by processes such as earthquakes and anthropogenically induced subsidence. Present-day regional sea level changes appear to be caused primarily by natural climate variability. However, the imprint of anthropogenic effects on regional sea level-whether due to changes in the atmospheric forcing or to mass variations in the system-will grow with time as climate change progresses, and toward the end of the twenty-first century, regional sea level patterns will be a superposition of climate variability modes and natural and anthropogenically induced static sea level patterns. Attribution and predictions of ongoing and future sea level changes require an expanded and sustained climate observing system.


Subject(s)
Air Conditioning , Hot Temperature , Human Activities , Oceans and Seas , Models, Theoretical
9.
Ann Rev Mar Sci ; 2: 145-73, 2010.
Article in English | MEDLINE | ID: mdl-21141661

ABSTRACT

Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.


Subject(s)
Global Warming , Environmental Monitoring , Oceans and Seas , Time Factors
10.
Science ; 328(5985): 1517-20, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20558707

ABSTRACT

Global sea levels have risen through the 20th century. These rises will almost certainly accelerate through the 21st century and beyond because of global warming, but their magnitude remains uncertain. Key uncertainties include the possible role of the Greenland and West Antarctic ice sheets and the amplitude of regional changes in sea level. In many areas, nonclimatic components of relative sea-level change (mainly subsidence) can also be locally appreciable. Although the impacts of sea-level rise are potentially large, the application and success of adaptation are large uncertainties that require more assessment and consideration.

11.
Science ; 316(5825): 709, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17272686

ABSTRACT

We present recent observed climate trends for carbon dioxide concentration, global mean air temperature, and global sea level, and we compare these trends to previous model projections as summarized in the 2001 assessment report of the Intergovernmental Panel on Climate Change (IPCC). The IPCC scenarios and projections start in the year 1990, which is also the base year of the Kyoto protocol, in which almost all industrialized nations accepted a binding commitment to reduce their greenhouse gas emissions. The data available for the period since 1990 raise concerns that the climate system, in particular sea level, may be responding more quickly to climate change than our current generation of models indicates.

12.
Science ; 314(5803): 1250-2, 2006 Nov 24.
Article in English | MEDLINE | ID: mdl-17053111
13.
Nature ; 438(7064): 35-6, 2005 Nov 03.
Article in English | MEDLINE | ID: mdl-16267539
14.
Science ; 297(5582): 783-4, 2002 Aug 02.
Article in English | MEDLINE | ID: mdl-12161640
SELECTION OF CITATIONS
SEARCH DETAIL
...