Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 32(11): 2037-42, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21960489

ABSTRACT

BACKGROUND AND PURPOSE: Emerging evidence suggests that obese adolescents show changes in brain structure compared with lean adolescents. In addition, obesity impacts body development during adolescence. We tested a hypothesis that T1, a marker of brain maturation, can show brain differences associated with obesity. MATERIALS AND METHODS: Adolescents similar in sex, family income, and school grade were recruited by using strict entry criteria. We measured brain T1 in 48 obese and 31 lean adolescents by quantitative MR imaging at 1.5T. We combined MPRAGE and inversion-recovery sequences with normalization to standard space and automated skull stripping to obtain T1 maps with a symmetric voxel volume of 1 mm(3). RESULTS: Sex, income, triglycerides, total cholesterol, and fasting glucose did not differ between groups, but obese adolescents had significantly lower HDL, higher LDL, and higher fasting insulin levels than lean adolescents. Intracranial vault volume did not differ between groups, but obese adolescents had smaller intracranial vault-adjusted brain parenchymal volumes. Obese adolescents had 4 clusters (>100 contiguous voxels) of T1 relaxation that were significantly different (P < .005) from those in lean adolescents. Three of these clusters had longer T1s in obese adolescents (in the orbitofrontal and parietal regions), and 1 cluster had shorter T1s, compared with lean adolescents. CONCLUSIONS: Our results suggest that obesity may have a significant impact on brain development, especially in the frontal and parietal lobes. It is unclear if these changes persist into adulthood or whether they indicate that obese subjects follow a different developmental trajectory during adolescence.


Subject(s)
Brain/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Obesity/pathology , Thinness/pathology , Adolescent , Adult , Female , Humans , Male , Organ Size , Reproducibility of Results , Sensitivity and Specificity , Young Adult
2.
Neuroradiol J ; 24(6): 854-61, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-24059886

ABSTRACT

The brain is the most cholesterol-rich organ in the body. Although most of the cholesterol in the brain is produced endogenously, some studies suggest that systemic cholesterol may be able to enter the brain. We investigated whether abnormal cholesterol profiles correlated with diffusion-tensor-imaging-based estimates of white matter microstructural integrity of lean and overweight/obese (o/o) adults. Twenty-two lean and 39 obese adults underwent magnetic resonance imaging, kept a three-day food diary, and had a standardized assessment of fasting blood lipids. The lean group ate less cholesterol-rich food than o/o although both groups ate equivalent servings of food per day. Voxelwise correlational analyses controlling for age, diabetes, and white matter hyperintensities, resulted in two significant clusters of negative associations between abnormal cholesterol profile and fractional anisotropy, located in the left and right prefrontal lobes. When the groups were split, the lean subjects showed no associations, whereas the o/o group expanded the association to three significant clusters, still in the frontal lobes. These findings suggest that cholesterol profile abnormalities may explain some of the reductions in white matter microstructural integrity that are reported in obesity.

SELECTION OF CITATIONS
SEARCH DETAIL
...