Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Discov Today ; 29(1): 103843, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000718

ABSTRACT

Tyrosinases (TYRs; EC 1.14.18.1) catalyze two sequential oxidative reactions of the melanin biosynthesis pathway and play an important role in mammalian pigmentation and enzymatic browning of fruit and vegetables. Inhibition of TYR activity is therefore an attractive target for new drugs and/or food ingredients. In addition, increasing evidence suggests that TYR regulation could be a novel target for treatments of cancer and Parkinson's disease. Biomasses, notably industrial byproducts and biowaste, are good sustainable sources of phytochemicals that may be valorized into bioactive compounds including TYR inhibitors. This review presents potential applications of biomass-derived polyphenols targeting TYR inhibition. Insights into structure-activity relationships of several polyphenols and their glycosides are highlighted. Finally, some remarks and perspectives on research into new TYR inhibitors from biomass waste are provided.


Subject(s)
Monophenol Monooxygenase , Polyphenols , Animals , Biomass , Polyphenols/pharmacology , Plant Extracts , Phytochemicals , Mammals/metabolism
2.
Waste Manag ; 85: 498-505, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30803605

ABSTRACT

In dry anaerobic digestion (AD), methanogenic performances are lowered by high solid contents. Low performances are often caused by a decrease of the gas-liquid transfer kinetics leading to local accumulation of inhibitory by-products. Hydrogen was previously identified as an inhibitor of hydrolytic and acetogenic microbial activities in dry AD. CO2 is also generated but its impact on the microbial activity remains unknown. In this study, the reversibility of dry AD inhibition at high H2 partial pressure (PH2 of 1 bar) was investigated by adding CO2 (400 mbars) after 11 and 18 days of methanogenesis inhibition, in an AD process operated at 25% TS, using wheat straw as substrate and inoculated with anaerobic granular sludge. As soon as CO2 was added, the methanogenic activity rapidly recovered within 3 days, from 0.41 ±â€¯0.1 to 3.77 ±â€¯0.8 and then 2.25 ±â€¯0.3, likely through the hydrogenotrophic pathway followed by the acetoclastic pathway, respectively. This result was confirmed by the high abundance of Methanomicrobiales (83%) and the emergence of Methanosarcinales sp (up to 17%) within the methanogenic community. Furthermore, the recovery kinetics were impacted by the duration of the inhibition period suggesting a different impact of the high PH2 on hydrogenotrophic and acetoclastic methanogens.


Subject(s)
Hydrogen , Sewage , Anaerobiosis , Bioreactors , Hydrolysis , Methane , Partial Pressure , Triticum
3.
Bioresour Technol ; 248(Pt A): 180-186, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28764910

ABSTRACT

Production of biohydrogen and related metabolic by-products was investigated in Solid State Dark Fermentation (SSDF) of food waste (FW) and wheat straw (WS). The effect of the total solids (TS) content and H2 partial pressure (ppH2), two of the main operating factors of SSDF, were investigated. Batch tests with FW at 10, 15, 20, 25 and 30% TS showed considerable effects of the TS on metabolites distribution. H2 production was strongly inhibited for TS contents higher than 15% with a concomitant accumulation of lactic acid and a decrease in substrate conversion. Varying the ppH2 had no significant effect on the conversion products and overall degradation of FW and WS, suggesting that ppH2 was not the main limiting factor in SSDF. This study showed that the conversion of complex substrates by SSDF depends on the substrate type and is limited by the TS content.


Subject(s)
Biomass , Fermentation , Lactic Acid , Food , Hydrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...