Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585864

ABSTRACT

Several neuronal populations in the brain transmit both the excitatory and inhibitory neurotransmitters, glutamate, and GABA, to downstream neurons. However, it remains largely unknown whether these opposing neurotransmitters are co-released onto the same postsynaptic neuron simultaneously or are independently transmitted at different time and locations (called co-transmission). Here, using whole-cell patch-clamp recording on acute mouse brain slices, we observed biphasic miniature postsynaptic currents, i.e., minis with time-locked excitatory and inhibitory currents, in striatal spiny projection neurons (SPNs). This observation cannot be explained by accidental coincidence of monophasic miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively), arguing for the co-release of glutamate and GABA. Interestingly, these biphasic minis could either be an mEPSC leading an mIPSC or vice versa. Although dopaminergic axons release both glutamate and GABA in the striatum, deletion of dopamine neurons did not eliminate biphasic minis, indicating that the co-release originates from another neuronal type. Importantly, we found that both types of biphasic minis were detected in other neuronal subtypes in the striatum as well as in nine out of ten additionally tested brain regions. Our results suggest that co-release of glutamate and GABA is a prevalent mode of neurotransmission in the brain.

2.
Nat Methods ; 19(11): 1461-1471, 2022 11.
Article in English | MEDLINE | ID: mdl-36303019

ABSTRACT

Cyclic adenosine monophosphate (cAMP) signaling integrates information from diverse G-protein-coupled receptors, such as neuromodulator receptors, to regulate pivotal biological processes in a cellular-specific and subcellular-specific manner. However, in vivo cellular-resolution imaging of cAMP dynamics remains challenging. Here, we screen existing genetically encoded cAMP sensors and further develop the best performer to derive three improved variants, called cAMPFIREs. Compared with their parental sensor, these sensors exhibit up to 10-fold increased sensitivity to cAMP and a cytosolic distribution. cAMPFIREs are compatible with both ratiometric and fluorescence lifetime imaging and can detect cAMP dynamics elicited by norepinephrine at physiologically relevant, nanomolar concentrations. Imaging of cAMPFIREs in awake mice reveals tonic levels of cAMP in cortical neurons that are associated with wakefulness, modulated by opioids, and differentially regulated across subcellular compartments. Furthermore, enforced locomotion elicits neuron-specific, bidirectional cAMP dynamics. cAMPFIREs also function in Drosophila. Overall, cAMPFIREs may have broad applicability for studying intracellular signaling in vivo.


Subject(s)
Biosensing Techniques , Animals , Mice , Biosensing Techniques/methods , Cyclic AMP , Cyclic AMP-Dependent Protein Kinases/metabolism , Neurons/metabolism , Signal Transduction , Drosophila/metabolism
3.
Elife ; 102021 06 08.
Article in English | MEDLINE | ID: mdl-34100715

ABSTRACT

Precise and efficient insertion of large DNA fragments into somatic cells using gene editing technologies to label or modify endogenous proteins remains challenging. Non-specific insertions/deletions (INDELs) resulting from the non-homologous end joining pathway make the process error-prone. Further, the insert is not readily removable. Here, we describe a method called CRISPR-mediated insertion of exon (CRISPIE) that can precisely and reversibly label endogenous proteins using CRISPR/Cas9-based editing. CRISPIE inserts a designer donor module, which consists of an exon encoding the protein sequence flanked by intron sequences, into an intronic location in the target gene. INDELs at the insertion junction will be spliced out, leaving mRNAs nearly error-free. We used CRISPIE to fluorescently label endogenous proteins in mammalian neurons in vivo with previously unachieved efficiency. We demonstrate that this method is broadly applicable, and that the insert can be readily removed later. CRISPIE permits protein sequence insertion with high fidelity, efficiency, and flexibility.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Mutagenesis, Insertional/genetics , Proteins/analysis , Proteins/genetics , Animals , Cell Line, Tumor , Exons/genetics , Humans , Mice , Neurons/cytology , Proteins/chemistry , Proteins/metabolism
4.
Cell Mol Neurobiol ; 41(4): 751-763, 2021 May.
Article in English | MEDLINE | ID: mdl-32445041

ABSTRACT

Exposure to noise produces cognitive and emotional disorders, and recent studies have shown that auditory stimulation or deprivation affects hippocampal function. Previously, we showed that exposure to high-intensity sound (110 dB, 1 min) strongly inhibits Schaffer-CA1 long-term potentiation (LTP). Here we investigated possible mechanisms involved in this effect. We found that exposure to 110 dB sound activates c-fos expression in hippocampal CA1 and CA3 neurons. Although sound stimulation did not affect glutamatergic or GABAergic neurotransmission in CA1, it did depress the level of brain-derived neurotrophic factor (BDNF), which is involved in promoting hippocampal synaptic plasticity. Moreover, perfusion of slices with BDNF rescued LTP in animals exposed to sound stimulation, whereas BDNF did not affect LTP in sham-stimulated rats. Furthermore, LM22A4, a TrkB receptor agonist, also rescued LTP from sound-stimulated animals. Our results indicate that depression of hippocampal BDNF mediates the inhibition of LTP produced by high-intensity sound stimulation.


Subject(s)
Brain-Derived Neurotrophic Factor/deficiency , Hippocampus/physiology , Long-Term Potentiation , Sound , Animals , Brain-Derived Neurotrophic Factor/metabolism , CA1 Region, Hippocampal/physiology , Glutamic Acid/metabolism , Long-Term Potentiation/physiology , Male , Proto-Oncogene Proteins c-fos/metabolism , Pyramidal Cells/metabolism , Rats, Wistar , Synapses/physiology , Synaptic Transmission , gamma-Aminobutyric Acid/metabolism
5.
PLoS One ; 14(5): e0210451, 2019.
Article in English | MEDLINE | ID: mdl-31067215

ABSTRACT

Exposure to loud sounds is related to harmful mental and systemic effects. The hippocampal function can be affected to either high-intensity sound exposure or long-term sound deprivation. We previously showed that hippocampal long-term potentiation (LTP) is inhibited after ten days of daily exposure to 2 minutes of high-intensity noise (110 dB), in the hippocampi of Wistar rats. Here we investigated how the glutamatergic and GABAergic neurotransmission mediated by ionotropic receptors is affected by the same protocol of high-intensity sound exposure. We found that while the glutamatergic transmission both by AMPA/kainate and NMDA receptors in the Schaffer-CA1 synapses is unaffected by long-term exposure to high-intensity sound, the amplitude of the inhibitory GABAergic currents is potentiated, but not the frequency of both spontaneous and miniature currents. We conclude that after prolonged exposure to short periods of high-intensity sound, GABAergic transmission is potentiated in the hippocampal CA1 pyramidal neurons. This effect could be an essential factor for the reduced LTP in the hippocampi of these animals after high-intensity sound exposure. We conclude that prolonged exposure to high- intensity sound could affect hippocampal inhibitory transmission and consequently, its function.


Subject(s)
Acoustic Stimulation , GABAergic Neurons/metabolism , Hippocampus/physiology , Long-Term Potentiation , Neural Inhibition , Pyramidal Cells/metabolism , Sound , Animals , CA1 Region, Hippocampal/physiology , Glutamates/metabolism , Male , Rats , Receptors, N-Methyl-D-Aspartate/metabolism
6.
Phys Rev E ; 97(4-1): 042408, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758644

ABSTRACT

In a neuron with hyperpolarization activated current (I_{h}), the correct input frequency leads to an enhancement of the output response. This behavior is known as resonance and is well described by the neuronal impedance. In a simple neuron model we derive equations for the neuron's resonance and we link its frequency and existence with the biophysical properties of I_{h}. For a small voltage change, the component of the ratio of current change to voltage change (dI/dV) due to the voltage-dependent conductance change (dg/dV) is known as derivative conductance (G_{h}^{Der}). We show that both G_{h}^{Der} and the current activation kinetics (characterized by the activation time constant τ_{h}) are mainly responsible for controlling the frequency and existence of resonance. The increment of both factors (G_{h}^{Der} and τ_{h}) greatly contributes to the appearance of resonance. We also demonstrate that resonance is voltage dependent due to the voltage dependence of G_{h}^{Der}. Our results have important implications and can be used to predict and explain resonance properties of neurons with the I_{h} current.


Subject(s)
Electrophysiological Phenomena , Models, Neurological , Neurons/cytology , Kinetics
7.
Channels (Austin) ; 12(1): 81-88, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29380651

ABSTRACT

The negative slope conductance created by the persistent sodium current (INaP) prolongs the decay phase of excitatory postsynaptic potentials (EPSPs). In a recent study, we demonstrated that this effect was due to an increase of the membrane time constant. When the negative slope conductance opposes completely the positive slope conductances of the other currents it creates a zero slope conductance region. In this region the membrane time constant is infinite and the decay phase of the EPSPs is virtually absent. Here we show that non-decaying EPSPs are present in CA1 hippocampal pyramidal cells in the zero slope conductance region, in the suprathreshold range of membrane potential. Na+ channel block with tetrodotoxin abolishes the non-decaying EPSPs. Interestingly, the non-decaying EPSPs are observed only in response to artificial excitatory postsynaptic currents (aEPSCs) of small amplitude, and not in response to aEPSCs of big amplitude. We also observed concomitantly delayed spikes with long latencies and high variability only in response to small amplitude aEPSCs. Our results showed that in CA1 pyramidal neurons INaP creates non-decaying EPSPs and delayed spikes in the subthreshold range of membrane potentials, which could potentiate synaptic integration of synaptic potentials coming from distal regions of the dendritic tree.


Subject(s)
Excitatory Postsynaptic Potentials , Hippocampus/cytology , Pyramidal Cells/metabolism , Sodium/metabolism , Animals , Electric Conductivity , Male , Pyramidal Cells/drug effects , Rats , Rats, Wistar , Tetrodotoxin/pharmacology , Voltage-Gated Sodium Channels/metabolism
8.
Biophys Rev ; 9(5): 827-834, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28808978

ABSTRACT

Based on passive cable theory, an increase in membrane conductance produces a decrease in the membrane time constant and input resistance. Unlike the classical leak currents, voltage-dependent currents have a nonlinear behavior which can create regions of negative conductance, despite the increase in membrane conductance (permeability). This negative conductance opposes the effects of the passive membrane conductance on the membrane input resistance and time constant, increasing their values and thereby substantially affecting the amplitude and time course of postsynaptic potentials at the voltage range of the negative conductance. This paradoxical effect has been described for three types of voltage-dependent inward currents: persistent sodium currents, L- and T-type calcium currents and ligand-gated glutamatergic N-methyl-D-aspartate currents. In this review, we describe the impact of the creation of a negative conductance region by these currents on neuronal membrane properties and synaptic integration. We also discuss recent contributions of the quasi-active cable approximation, an extension of the passive cable theory that includes voltage-dependent currents, and its effects on neuronal subthreshold properties.

9.
Biophys J ; 113(10): 2207-2217, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-28732557

ABSTRACT

Neuronal subthreshold voltage-dependent currents determine membrane properties such as the input resistance (Rin) and the membrane time constant (τm) in the subthreshold range. In contrast with classical cable theory predictions, the persistent sodium current (INaP), a non-inactivating mode of the voltage-dependent sodium current, paradoxically increases Rin and τm when activated. Furthermore, this current amplifies and prolongs synaptic currents in the subthreshold range. Here, using a computational neuronal model, we showed that the creation of a region of negative slope conductance by INaP activation is responsible for these effects and the ability of the negative slope conductance to amplify and prolong Rin and τm relies on the fast activation of INaP. Using dynamic clamp in hippocampal CA1 pyramidal neurons in brain slices, we showed that the effects of INaP on Rin and τm can be recovered by applying an artificial INaP after blocking endogenous INaP with tetrodotoxin. Furthermore, we showed that injection of a pure negative conductance is enough to reproduce the effects of INaP on Rin and τm and is also able to prolong artificial excitatory post synaptic currents. Since both the negative slope conductance and the almost instantaneous activation are critical for producing these effects, the INaP is an ideal current for boosting the amplitude and duration of excitatory post synaptic currents near the action potential threshold.


Subject(s)
Excitatory Postsynaptic Potentials , Models, Neurological , Sodium/metabolism , Animals , Hippocampus/cytology , Hippocampus/physiology , Kinetics , Male , Neurons/cytology , Rats , Rats, Wistar
11.
Front Cell Neurosci ; 10: 249, 2016.
Article in English | MEDLINE | ID: mdl-27833532

ABSTRACT

In a neuronal population, several combinations of its ionic conductances are used to attain a specific firing phenotype. Some neurons present heterogeneity in their firing, generally produced by expression of a specific conductance, but how additional conductances vary along in order to homeostatically regulate membrane excitability is less known. Dorsal cochlear nucleus principal neurons, fusiform neurons, display heterogeneous spontaneous action potential activity and thus represent an appropriate model to study the role of different conductances in establishing firing heterogeneity. Particularly, fusiform neurons are divided into quiet, with no spontaneous firing, or active neurons, presenting spontaneous, regular firing. These modes are determined by the expression levels of an intrinsic membrane conductance, an inwardly rectifying potassium current (IKir). In this work, we tested whether other subthreshold conductances vary homeostatically to maintain membrane excitability constant across the two subtypes. We found that Ih expression covaries specifically with IKir in order to maintain membrane resistance constant. The impact of Ih on membrane resistance is dependent on the level of IKir expression, being much smaller in quiet neurons with bigger IKir, but Ih variations are not relevant for creating the quiet and active phenotypes. Finally, we demonstrate that the individual proportion of each conductance, and not their absolute conductance, is relevant for determining the neuronal firing mode. We conclude that in fusiform neurons the variations of their different subthreshold conductances are limited to specific conductances in order to create firing heterogeneity and maintain membrane homeostasis.

12.
Hear Res ; 332: 188-198, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26548740

ABSTRACT

High doses of salicylate induce reversible tinnitus in experimental animals and humans, and is a common tinnitus model. Salicylate probably acts centrally and induces hyperactivity in specific auditory brainstem areas like the dorsal cochlear nucleus (DCN). However, little is known about the effect of high doses of salicylate in synapses and neurons of the DCN. Here we investigated the effects of salicylate on the excitability and evoked and spontaneous neurotransmission in the main neurons (fusiform, cartwheel and tuberculoventral) and synapses of the DCN using whole cell recordings in slices containing the DCN. For this, we incubate the slices for at least 1 h in solution with 1.4 mM salicylate, and recorded action potentials and evoked and spontaneous synaptic currents in fusiform, cartwheel (CW) and putative tuberculoventral (TBV) neurons. We found that incubation with salicylate did not affect the firing of fusiform and TBV neurons, but decreased the spontaneous firing of cartwheel neurons, without affecting AP threshold or complex spikes. Evoked and spontaneous glutamatergic neurotransmission on the fusiform and CW neurons cells was unaffected by salicylate and evoked glycinergic neurotransmission on fusiform neurons was also unchanged by salicylate. On the other hand spontaneous glycinergic transmission on fusiform neurons was reduced in the presence of salicylate. We conclude that high doses of salicylate produces a decreased inhibitor drive on DCN fusiform neurons by reducing the spontaneous firing of cartwheel neurons, but this effect is not able to increase the excitability of fusiform neurons. So, the mechanisms of salicylate-induced tinnitus are probably more complex than simple changes in the neuronal firing and basal synaptic transmission in the DCN.


Subject(s)
Cochlear Nucleus/drug effects , Glycine/metabolism , Neural Inhibition/drug effects , Neurons/drug effects , Sodium Salicylate/toxicity , Synaptic Transmission/drug effects , Tinnitus/chemically induced , Animals , Cochlear Nucleus/metabolism , Cochlear Nucleus/physiopathology , Evoked Potentials, Auditory , In Vitro Techniques , Male , Neurons/metabolism , Rats, Wistar , Tinnitus/metabolism , Tinnitus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...