Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanoscale ; 10(24): 11307-11313, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29897092

ABSTRACT

We report a combined theoretical and experimental study on photocarrier dynamics in monolayer phosphorene and bulk black phosphorus. Samples of monolayer phosphorene and bulk black phosphorus were fabricated by mechanical exfoliation, identified according to their reflective contrasts, and protected by covering them with hexagonal boron nitride layers. Photocarrier dynamics in these samples was studied by an ultrafast pump-probe technique. The photocarrier lifetime of monolayer phosphorene was found to be about 700 ps, which is about 9 times longer than that of bulk black phosphorus. This trend was reproduced in our calculations based on ab initio nonadiabatic molecular dynamics combined with time-domain density functional theory in the Kohn-Sham representation, and can be attributed to the smaller bandgap and stronger nonadiabatic coupling in bulk. The transient absorption response was also found to be dependent on the sample orientation with respect to the pump polarization, which is consistent with the previously reported anisotropic absorption of phosphorene. In addition, an oscillating component of the differential reflection signal at early probe delays was observed in the bulk sample and was attributed to the layer-breathing phonon mode with an energy of about 1 meV and a decay time of about 1.35 ps. These results provide valuable information for application of monolayer phosphorene in optoelectronics.

2.
Nano Lett ; 17(11): 6661-6666, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29064255

ABSTRACT

Two-dimensional materials, such as graphene, transition metal dichalcogenides, and phosphorene, can be used to construct van der Waals multilayer structures. This approach has shown potentials to produce new materials that combine novel properties of the participating individual layers. One key requirement for effectively harnessing emergent properties of these materials is electronic connection of the involved atomic layers through efficient interlayer charge or energy transfer. Recently, ultrafast charge transfer on a time scale shorter than 100 fs has been observed in several van der Waals bilayer heterostructures formed by two different materials. However, information on the transfer between two atomic layers of the same type is rare. Because these homobilayers are essential elements in constructing multilayer structures with desired optoelectronic properties, efficient interlayer transfer is highly desired. Here we show that electron transfer between two monolayers of MoSe2 occurs on a picosecond time scale. Even faster transfer was observed in homobilayers of WS2 and WSe2. The samples were fabricated by manually stacking two exfoliated monolayer flakes. By adding a graphene layer as a fast carrier recombination channel for one of the two monolayers, the transfer of the photoexcited carriers from the populated to the drained monolayers was time-resolved by femtosecond transient absorption measurements. The observed efficient interlayer carrier transfer indicates that such homobilayers can be used in van der Waals multilayers to enhance their optical absorption without significantly compromising the interlayer transport performance. Our results also provide valuable information for understanding interlayer charge transfer in heterostructures.

3.
Nano Lett ; 17(3): 1623-1628, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28212486

ABSTRACT

Two-dimensional materials, such as graphene and monolayer transition metal dichalcogenides, allow the fabrication of multilayer structures without lattice matching restriction. A central issue in developing such artificial materials is to understand and control the interlayer electron transfer process, which plays a key role in harnessing their emergent properties. Recent photoluminescence and transient absorption measurements revealed that the electron transfer in heterobilayers occurs on ultrafast time scales. However, there is still a lack of fundamental understanding on how this process can be so efficient at van der Waals interfaces. Here we show evidence suggesting the coherent nature of such interlayer electron transfer. In a trilayer of MoS2-WS2-MoSe2, electrons excited in MoSe2 transfer to MoS2 in about one picosecond. Surprisingly, these electrons do not populate the middle WS2 layer during this process. Calculations showed the coherent nature of the charge transfer and reproduced the measured electron transfer time. The hole transfer from MoS2 to MoSe2 is also found to be efficient and ultrafast. The separation of electrons and holes extends their lifetimes to more than one nanosecond, suggesting potential applications of such multilayer structures in optoelectronics.

4.
Nanoscale Horiz ; 2(1): 31-36, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-32260674

ABSTRACT

We report a van der Waals heterostructure formed by monolayers of MoS2 and ReS2 with a type-I band alignment. First-principle calculations show that in this heterostructure, both the conduction band minimum and the valence band maximum are located in the ReS2 layer. This configuration is different from previously accomplished type-II van der Waals heterostructures where electrons and holes reside in different layers. The type-I nature of this heterostructure is evident by photocarrier dynamics observed by transient absorption measurements. We found that carriers injected in MoS2 transfer to ReS2 in about 1 ps, while no charge transfer was observed when carriers are injected in ReS2. The carrier lifetime in the heterostructure is similar to that in monolayer ReS2, further confirming the lack of charge separation. We attribute the slower transfer time to the incoherent nature of the charge transfer due to the different crystal structures of the two materials forming the heterostructure. The demonstrated type-I semiconducting van der Waals heterostructure provides new ways to utilize two-dimensional materials for light emission applications, and a new platform to study light-matter interaction in atomically thin materials with strong confinement of electrons and holes.

5.
ACS Nano ; 10(7): 6612-22, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27309275

ABSTRACT

van der Waals (vdW) heterostructures are promising building blocks for future ultrathin electronics. Fabricating vdW heterostructures by stamping monolayers at arbitrary angles provides an additional range of flexibility to tailor the resulting properties than could be expected by direct growth. Here, we report fabrication and comprehensive characterizations of WSe2/WS2 bilayer heterojunctions with various twist angles that were synthesized by artificially stacking monolayers of WS2 and WSe2 grown by chemical vapor deposition. After annealing the WSe2/WS2 bilayers, Raman spectroscopy reveals interlayer coupling with the appearance of a mode at 309.4 cm(-1) that is sensitive to the number of WSe2 layers. This interlayer coupling is associated with substantial quenching of the intralayer photoluminescence. In addition, microabsorption spectroscopy of WSe2/WS2 bilayers revealed spectral broadening and shifts as well as a net ∼10% enhancement in integrated absorption strength across the visible spectrum with respect to the sum of the individual monolayer spectra. The observed broadening of the WSe2 A exciton absorption band in the bilayers suggests fast charge separation between the layers, which was supported by direct femtosecond pump-probe spectroscopy. Density functional calculations of the band structures of the bilayers at different twist angles and interlayer distances found robust type II heterojunctions at all twist angles, and predicted variations in band gap for particular atomistic arrangements. Although interlayer excitons were indicated using femtosecond pump-probe spectroscopy, photoluminescence and absorption spectroscopies did not show any evidence of them, suggesting that the interlayer exciton transition is very weak. However, the interlayer coupling for the WSe2/WS2 bilayer heterojunctions indicated by substantial PL quenching, enhanced absorption, and rapid charge transfer was found to be insensitive to the relative twist angle, indicating that stamping provides a robust approach to realize reliable optoelectronics.

6.
Nanoscale ; 8(22): 11681-8, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27219022

ABSTRACT

Two-dimensional transition metal dichalcogenides provide a unique platform to study excitons in confined structures. Recently, several important aspects of excitons in these materials have been investigated in detail. However, the formation process of excitons from free carriers has yet to be understood. Here we report time-resolved measurements on the exciton formation process in monolayer samples of MoS2, MoSe2, WS2, and WSe2. The free electron-hole pairs, injected by an ultrashort laser pulse, immediately induce a transient absorption signal of a probe pulse tuned to the exciton resonance. The signal quickly drops by about a factor of two within 1 ps and is followed by a slower decay process. In contrast, when excitons are resonantly injected, the fast decay component is absent. Based both on its excitation excess energy and intensity dependence, this fast decay process is attributed to the formation of excitons from the electron-hole pairs. This interpretation is also consistent with a model that shows how free electron-hole pairs can be about twice more effective than excitons in altering the exciton absorption strength. From our measurements and analysis of our results, we determined that the exciton formation times in these monolayers to be shorter than 1 ps.

7.
Nanoscale ; 7(41): 17523-8, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26444979

ABSTRACT

We show that the van der Waals heterostructure formed by MoSe2 and WS2 provides a unique system with near degenerate interlayer and intralayer excitonic states. Photoluminescence measurements indicate that the charge transfer exciton states are approximately 50 meV below the MoSe2 exciton states, with a significant spectral overlap. The transient absorption of a femtosecond pulse was used to study the dynamics of the charge transfer excitons at room temperature. We found a lifetime of approximately 80 ps for the charge transfer excitons. A diffusion coefficient of about 14 cm(2) s(-1) was deduced, which is comparable to individual excitons in transition metal dichalcogenides.

8.
ACS Nano ; 9(6): 6459-64, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26046238

ABSTRACT

We report the observation of trions at room temperature in a van der Waals heterostructure composed of MoSe2 and WS2 monolayers. These trions are formed by excitons excited in the WS2 layer and electrons transferred from the MoSe2 layer. Recombination of trions results in a peak in the photoluminescence spectra, which is absent in monolayer WS2 that is not in contact with MoSe2. The trion origin of this peak is further confirmed by the linear dependence of the peak position on excitation intensity. We deduced a zero-density trion binding energy of 62 meV. The trion formation facilitates electrical control of exciton transport in transition metal dichalcogenide heterostructures, which can be utilized in various optoelectronic applications.

9.
Nanoscale ; 7(21): 9526-31, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25947347

ABSTRACT

Spatiotemporal dynamics of excitons in monolayer and bulk WS2 at room temperature is studied by transient absorption microscopy in the reflection geometry. Excitons are formed from photocarriers injected by a tightly focused 390 nm pump pulse, and monitored by detecting different reflection of a time-delayed and spatially scanned 620 nm probe pulse. We obtain exciton lifetimes of 22 ± 1 and 110 ± 10 ps in monolayer and bulk WS2, respectively. Both lifetimes are independent of the exciton density, showing the absence of multi-exciton recombination processes. Exciton diffusion coefficients of 60 ± 20 and 3.5 ± 0.5 cm(2) s(-1) are obtained in monolayer and bulk samples, respectively. These results provide a foundation for understanding excitons in this new material and its optoelectronic applications.

10.
ACS Nano ; 8(12): 12717-24, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25402669

ABSTRACT

We observe subpicosecond charge separation and formation of indirect excitons a van der Waals heterostructure formed by molybdenum disulfide and molybdenum diselenide monolayers. The sample is fabricated by manually stacking monolayer MoS2 and MoSe2 flakes prepared by mechanical exfoliation. Photoluminescence measurements confirm the formation of an effective heterojunction. In the transient absorption measurements, an ultrafast laser pulse resonantly injects excitons in the MoSe2 layer of the heterostructure. Differential reflection of a probe pulse tuned to the MoS2 exciton resonance is immediately observed following the pump excitation. This proves ultrafast transfer of electrons from MoSe2 to MoS2 layers, despite the strong Coulomb attraction from the holes in the resonantly excited excitons. Conversely, when excitons are selectively injected in MoS2, holes transfer to MoSe2 on an ultrafast time scale, too, as observed by measuring the differential reflection of a probe tuned to the MoSe2 resonance. The ultrafast charge transfer process is followed by the formation of spatially indirect excitons with electrons and holes residing in different layers. The lifetime of these indirect excitons are found to be longer than that of the direct excitons in individual MoS2 and MoSe2 monolayers.

11.
Nanoscale ; 6(9): 4915-9, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24671171

ABSTRACT

The exciton dynamics in monolayer and bulk MoSe2 samples are studied by transient absorption microscopy with a high spatiotemporal resolution. Excitons are injected with a point-like spatial distribution using a tightly focused femtosecond pulse. The spatiotemporal dynamics of these excitons are monitored by measuring transient absorption of a time-delayed and spatially scanned probe pulse. We obtain the exciton diffusion coefficients of 12 ± 3 and 19 ± 2 cm(2) s(-1) and exciton lifetimes of 130 ± 20 and 210 ± 10 ps in the monolayer and bulk samples, respectively. These values are useful for understanding excitons and their interactions with the environment in these structures and potential applications of MoSe2 in optoelectronics and electronics.

12.
ACS Nano ; 8(3): 2970-6, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24547746

ABSTRACT

We present an experimental investigation on the exciton dynamics of monolayer and bulk WSe2 samples, both of which are studied by femtosecond transient absorption microscopy. Under the excitation of a 405 nm pump pulse, the differential reflection signal of a probe pulse (tuned to the A-exciton resonance) reaches a peak rapidly that indicates an ultrafast formation process of excitons. By resolving the differential reflection signal in both time and space, we directly determine the exciton lifetimes of 18±1 and 160±10 ps and the exciton diffusion coefficients of 15±5 and 9±3 cm2/s in the monolayer and bulk samples, respectively. From these values, we deduce other parameters characterizing the exciton dynamics such as the diffusion length, the mobility, the mean free path, and the mean free length. These fundamental parameters are useful for understanding the excitons in monolayer and bulk WSe2 and are important for applications in optoelectronics, photonics, and electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...