Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(5): 7261-7275, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726231

ABSTRACT

Nanophotonic materials enable unprecedented control of light-matter interactions, including the ability to dynamically steer or shape wavefronts. Consequently, nanophotonic systems such as metasurfaces have been touted as promising candidates for free-space optical communications, directed energy and additive manufacturing, which currently rely on slow mechanical scanners or electro-optical components for beam steering and shaping. However, such applications necessitate the ability to support high laser irradiances (> kW/cm2) and systematic studies on the high-power laser damage performance of nanophotonic materials and designs are sparse. Here, we experimentally investigate the pulsed laser-induced damage performance (at λ ∼ 1 µm) of model nanophotonic thin films including gold, indium tin oxide, and refractory materials such as titanium nitride and titanium oxynitride. We also model the spatio-thermal dissipation dynamics upon single-pulse illumination by anchoring experimental laser damage thresholds. Our findings show that gold exhibits the best laser damage resistance, but we argue that alternative materials such as transparent conducting oxides could be optimized to balance the tradeoff between damage resistance and optical tunability, which is critical for the design of thermally robust nanophotonic systems. We also discuss damage mitigation and ruggedization strategies for future device-scale studies and applications requiring high power beam manipulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...