Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34300678

ABSTRACT

Electronic textiles have become a dynamic research field in recent decades, attracting attention to smart wearables to develop and integrate electronic devices onto clothing. Combining traditional screen-printing techniques with novel nanocarbon-based inks offers seamless integration of flexible and conformal antenna patterns onto fabric substrates with a minimum weight penalty and haptic disruption. In this study, two different fabric-based antenna designs called PICA and LOOP were fabricated through a scalable screen-printing process by tuning the conductive ink formulations accompanied by cellulose nanocrystals. The printing process was controlled and monitored by revealing the relationship between the textiles' nature and conducting nano-ink. The fabric prototypes were tested in dynamic environments mimicking complex real-life situations, such as being in proximity to a human body, and being affected by wrinkling, bending, and fabric care such as washing or ironing. Both computational and experimental on-and-off-body antenna gain results acknowledged the potential of tunable material systems complimenting traditional printing techniques for smart sensing technology as a plausible pathway for future wearables.


Subject(s)
Nanotubes, Carbon , Wearable Electronic Devices , Electric Conductivity , Electronics , Humans , Textiles
2.
Sci Rep ; 6: 27052, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27243374

ABSTRACT

Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm(-2) (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

3.
Adv Funct Mater ; 20(19): 3266-3271, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-21765822

ABSTRACT

Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite (IPCNC) actuators. Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast device actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress the strain that does not contribute to the actuation (unwanted strain) thereby reducing actuation efficiency. Here our experiments demonstrate that the VA-CNTs give an anisotropic elastic response in the composite electrodes, which suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 volts). The results reported here suggest pathways for optimizing the electrode morphology in IPCNCs using ultra-high volume fraction VA-CNTs to further enhanced performance.

4.
ACS Appl Mater Interfaces ; 1(11): 2565-72, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20356128

ABSTRACT

A novel method for the fabrication of carbon nanotube (CNT)-conducting polymer composites is demonstrated by conformally coating extremely high aspect ratio vertically aligned-CNT (A-CNT) arrays with conducting polymer via oxidative chemical vapor deposition (oCVD). A mechanical densification technique is employed that allows the spacing of the A-CNTs to be controlled, yielding a range of inter-CNT distances between 20 and 70 nm. Using this morphology control, oCVD is shown to conformally coat 8-nm-diameter CNTs having array heights up to 1 mm (an aspect ratio of 10(5)) at all inter-CNT spacings. Three phase CNT-conducting polymer nanocomposites are then fabricated by introducing an insulating epoxy via capillary-driven wetting. CNT morphology is maintained during processing, allowing quantification of direction-dependent (nonisotropic) composite properties. Electrical conductivity occurs primarily along the CNT axial direction, such that the conformal conducting polymer has little effect on the activation energy required for charge conduction. In contrast, the conducting polymer coating enhanced the conductivity in the radial direction by lowering the activation energy required for the creation of mobile charge carriers, in agreement with variable-range-hopping models. The fabrication strategy introduced here can be used to create many multifunctional materials and devices (e.g., direction-tailorable hydrophobic and highly conducting materials), including a new four-phase advanced fiber composite architecture.

SELECTION OF CITATIONS
SEARCH DETAIL
...