Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1141794, 2023.
Article in English | MEDLINE | ID: mdl-37138861

ABSTRACT

Introduction: Anti-COVID vaccination in Argentina was carried out using different protocols and variations in periods between administrations, as well as combinations of different vaccine platforms. Considering the relevance of the antibody response in viral infections, we analyzed anti-S antibodies in healthy people at different points of time following the Sputnik immunization procedure. Methods: We attended the vaccination centers in the city of Rosario, which had shorter versus longer intervals between both doses. A total of (1021) adults with no COVID-compatible symptoms (throughout the study period) were grouped according to the gap between both vaccine doses: 21 (Group A, n=528), 30 (Group B, n=147), and 70 days (Group C, n=82), as well as an additional group of individuals with heterologous vaccination (Sputnik/Moderna, separated by a 107-day interval, group D, n=264). Results and conclusions: While there were no between-group differences in baseline levels of specific antibodies, data collected several weeks after administering the second dose showed that group D had the highest amounts of specific antibodies, followed by values recorded in Groups C, B, and A. The same pattern of group differences was seen when measuring anti-S antibodies at 21 or 180 days after the first and second doses, respectively. Delayed between-dose intervals coexisted with higher antibody titers. This happened even more when using a prime-boost heterologous schedule.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Antibody Formation , COVID-19/prevention & control , Vaccination , Immunization
2.
Methods Enzymol ; 659: 19-35, 2021.
Article in English | MEDLINE | ID: mdl-34752286

ABSTRACT

Research in recombinant protein expression in microorganism hosts spans half a century. The field has evolved from mostly trial-and-error approaches to more rational strategies, including careful design of the expression vectors and the coding sequence for the protein of interest. It is important to reflect on many aspects about vector construction, such as codon usage, integration site, coding sequence mutagenesis and many others. In this chapter, we overview methods and considerations to generate a suitable construct and anticipate possible experimental roadblocks.


Subject(s)
Escherichia coli , Genetic Vectors , Base Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors/genetics , Plasmids/genetics , Recombinant Proteins/metabolism
3.
Methods Enzymol ; 659: 3-18, 2021.
Article in English | MEDLINE | ID: mdl-34752291

ABSTRACT

One of the goals in recombinant protein production in Escherichia coli is to maximize productivity. High volumetric and specific yields can be reached after careful selection of expression strains and optimization of cultivation parameters. In this chapter, we review the many tools available to make the most out of this versatile microbial cell factory. Useful guidelines and options for troubleshooting production are presented.


Subject(s)
Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/metabolism
4.
Protein Sci ; 30(10): 2106-2120, 2021 10.
Article in English | MEDLINE | ID: mdl-34382711

ABSTRACT

Ferredoxin-NADP+ reductases (FNRs) are ubiquitous flavoenzymes involved in redox metabolisms. FNRs catalyze the reversible electron transfer between NADP(H) and ferredoxin or flavodoxin. They are classified as plant- and mitochondrial-type FNR. Plant-type FNRs are divided into plastidic and bacterial classes. The plastidic FNRs show turnover numbers between 20 and 100 times higher than bacterial enzymes and these differences have been related to their physiological functions. We demonstrated that purified Escherichia coli FPR (EcFPR) contains tightly bound NADP+ , which does not occur in plastidic type FNRs. The three-dimensional structure of EcFPR evidenced that NADP+ interacts with three arginines (R144, R174, and R184) which could generate a very high affinity and structured site. These arginines are conserved in other bacterial FNRs but not in the plastidic enzymes. We have cross-substituted EcFPR arginines with residues present in analogous positions in the Pisum sativum FNR (PsFNR) and replaced these amino acids by arginines in PsFNR. We analyzed all proteins by structural, kinetic, and stability studies. We found that EcFPR mutants do not contain bound NADP+ and showed increased Km for this nucleotide. The EcFPR activity was inhibited by NADP+ but this behavior disappeared as arginines were removed. A NADP+ analog of the nicotinamide portion produced an activating effect on EcFPR and promoted the NADP+ release. Our results give evidence for a new model of NADP+ binding and catalysis in bacterial FNRs.We propose that this tight NADP+ binding constitutes an essential catalytic and regulatory mechanism of bacterial FNRs involved in redox homeostasis.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Ferredoxin-NADP Reductase/chemistry , NADP/chemistry , Kinetics , Pisum sativum/enzymology , Protein Binding
5.
FEBS Lett ; 595(11): 1525-1541, 2021 06.
Article in English | MEDLINE | ID: mdl-33792910

ABSTRACT

In the N-degron pathway of protein degradation of Escherichia coli, the N-recognin ClpS identifies substrates bearing N-terminal phenylalanine, tyrosine, tryptophan, or leucine and delivers them to the caseinolytic protease (Clp). Chloroplasts contain the Clp system, but whether chloroplastic ClpS1 adheres to the same constraints is unknown. Moreover, the structural underpinnings of substrate recognition are not completely defined. We show that ClpS1 recognizes canonical residues of the E. coli N-degron pathway. The residue in second position influences recognition (especially in N-terminal ends starting with leucine). N-terminal acetylation abrogates recognition. ClpF, a ClpS1-interacting partner, does not alter its specificity. Substrate binding provokes local remodeling of residues in the substrate-binding cavity of ClpS1. Our work strongly supports the existence of a chloroplastic N-degron pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Carrier Proteins/chemistry , Chloroplasts/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chloroplasts/genetics , Cloning, Molecular , Conserved Sequence , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Leucine/chemistry , Leucine/metabolism , Models, Molecular , Phenylalanine/chemistry , Phenylalanine/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Tryptophan/chemistry , Tryptophan/metabolism , Tyrosine/chemistry , Tyrosine/metabolism
6.
Plant Mol Biol ; 104(4-5): 451-465, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32803477

ABSTRACT

KEY MESSAGE: The first biochemical characterization of a chloroplastic disaggregase is reported (Arabidopsis thaliana ClpB3). ClpB3 oligomerizes into active hexamers that resolubilize aggregated substrates using ATP and without the aid of partners. Disaggregases from the Hsp100/Clp family are a type of molecular chaperones involved in disassembling protein aggregates. Plant cells are uniquely endowed with ClpB proteins in the cytosol, mitochondria and chloroplasts. Chloroplastic ClpB proteins have been implicated in key processes like the unfolded protein response; however, they have not been studied in detail. In this study, we explored the biochemical properties of a chloroplastic ClpB disaggregase, in particular, ClpB3 from A. thaliana. ClpB3 was produced recombinantly in Escherichia coli and affinity-purified to near homogeneity. ClpB3 forms a hexameric complex in the presence of MgATP and displays intrinsic ATPase activity. We demonstrate that ClpB3 has ATPase activity in a wide range of pH and temperature values and is particularly resistant to heat. ClpB3 specifically targets unstructured polypeptides and mediates the reactivation of heat-denatured model substrates without the aid of the Hsp70 system. Overall, this work represents the first in-depth biochemical description of a ClpB protein from plants and strongly supports its role as the putative disaggregase chaperone in chloroplasts.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Adenosine Triphosphate/metabolism , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , HSP70 Heat-Shock Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Kinetics , Magnesium/metabolism , Molecular Chaperones/metabolism , Protein Denaturation , Temperature
7.
Biochim Biophys Acta Gen Subj ; 1864(3): 129514, 2020 03.
Article in English | MEDLINE | ID: mdl-31911239

ABSTRACT

BACKGROUND: Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker is maintained as an epiphyte on citrus leaves until entering the plant tissue. During epiphytic survival, bacteria may encounter low water availability that challenges the infection process. Proteomics analyses of Xcc under saline stress, mimicking the conditions found during epiphytic survival, showed increased abundance of a putative NAD(P)H dehydrogenase encoded by XAC2229. METHODS: Expression levels of XAC2229 and a Xcc mutant in XAC2229 were analyzed in salt and oxidative stress and during plant-pathogen interaction. An Escherichia coli expressing XAC2229 was obtained, and the role of this protein in oxidative stress resistance and in reactive oxygen species production was studied. Finally, Xac2229 protein was purified, spectrophotometric and cofactor analyses were done and enzymatic activities determined. RESULTS: XAC2229 was expressed under salt stress and during plant-pathogen interaction. ΔXAC2229 mutant showed less number of cankers and impaired epiphytic survival than the wild type strain. ΔXAC2229 survived less in the presence of H2O2 and produced more reactive oxygen species and thiobarbituric acid-reactive substances than the wild type strain. Similar results were observed for E. coli expressing XAC2229. Xac2229 is a FAD containing flavoprotein, displays diaphorase activity with an optimum at pH 6.0 and has quinone reductase activity using NADPH as an electron donor. CONCLUSIONS: A FAD containing flavoprotein from Xcc is a new NADPH quinone reductase required for bacterial virulence, particularly in Xcc epiphytic survival on citrus leaves. GENERAL SIGNIFICANCE: A novel protein involved in the worldwide disease citrus canker was characterized.


Subject(s)
NAD(P)H Dehydrogenase (Quinone)/metabolism , Xanthomonas/enzymology , Benzoquinones/metabolism , Citrus/metabolism , Citrus/microbiology , Hydrogen Peroxide/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , NADP/metabolism , Oxidative Stress , Plant Leaves/metabolism , Salt Stress/genetics , Salt Stress/physiology , Virulence , Xanthomonas/metabolism , Xanthomonas/pathogenicity , Xanthomonas/physiology
8.
Protein Sci ; 28(8): 1412-1422, 2019 08.
Article in English | MEDLINE | ID: mdl-31219641

ABSTRACT

The production of proteins in sufficient amounts is key for their study or use as biotherapeutic agents. Escherichia coli is the host of choice for recombinant protein production given its fast growth, easy manipulation, and cost-effectiveness. As such, its protein production capabilities are continuously being improved. Also, the associated tools (such as plasmids and cultivation conditions) are subject of ongoing research to optimize product yield. In this work, we review the latest advances in recombinant protein production in E. coli.


Subject(s)
Escherichia coli/chemistry , Escherichia coli/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry
9.
Protein Sci ; 28(4): 800-807, 2019 04.
Article in English | MEDLINE | ID: mdl-30653276

ABSTRACT

The production of recombinant proteins in bacteria has increased significantly in recent years, becoming a common tool for both research and the industrial production of proteins. One of the requirements of this methodology is to obtain the desired protein without contaminants. However, this goal cannot always be readily achieved. Multiple strategies have been developed to improve the quality of the desired protein product. Nevertheless, contamination with molecular chaperones is one of the recalcitrant problems that still affects the quality of the obtained proteins. The ability of chaperones to bind to unfolded proteins or to regions where the polypeptide chain is exposed make the removal of the contamination during purification challenging to achieve. This work aimed to develop a strategy to remove contaminating DnaK, one of the homologous Hsp70 molecular chaperones found in Escherichia coli, from purified recombinant proteins. For this purpose, we developed a methodology that captures the DnaK from the contaminating proteins by co-incubation with a GST-cleanser protein that has free functional binding sites for the chaperone. The cleanser protein can then be easily removed together with the captured DnaK. Here, we demonstrated the utility of our system by decontaminating a Histidine-tagged recombinant protein in a batch process. The addition of the GST-cleanser protein in the presence of ATP-Mg eliminates the DnaK contamination substantially. Thus, our decontaminant strategy results versatile and straightforward and can be applied to proteins obtained with different expression and purifications systems as well as to small samples or large volume preparations.


Subject(s)
Escherichia coli Proteins/isolation & purification , Escherichia coli/chemistry , HSP70 Heat-Shock Proteins/isolation & purification , Recombinant Proteins/chemistry , Binding Sites , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Immobilized Proteins/chemistry
10.
Biochim Biophys Acta Gen Subj ; 1863(4): 651-660, 2019 04.
Article in English | MEDLINE | ID: mdl-30639162

ABSTRACT

BACKGROUND: Ferredoxins are small iron-sulfur proteins that participate as electron donors in various metabolic pathways. They are recognized substrates of ferredoxin-NADP+ reductases (FNR) in redox metabolisms in mitochondria, plastids, and bacteria. We previously found a plastidic-type FNR in Leptospira interrogans (LepFNR), a parasitic bacterium of animals and humans. Nevertheless, we did not identify plant-type ferredoxins or flavodoxins, the common partners of this kind of FNR. METHODS: Sequence alignment, phylogenetical analyses and structural modeling were performed for the identification of a 2[4Fe4S] ferredoxin (LepFd2) as a putative redox partner of LepFNR in L. interrogans. The gene encoding LepFd2 was cloned and the protein overexpressed and purified. The functional properties of LepFd2 and LepFNR-LepFd2 complex were analyzed by kinetic and mutagenesis studies. RESULTS: We succeeded in expressing and purifying LepFd2 with its FeS cluster properly bound. We found that LepFd2 exchanges electrons with LepFNR. Moreover, a unique structural subdomain of LepFNR (loop P75-Y91), was shown to be involved in the recognition and binding of LepFd2. This structural subdomain is not found in other FNR homologs. CONCLUSIONS: We report for the first time a redox pair in L. interrogans in which a plastidic FNR exchanges electron with a bacterial 2[4Fe4S] ferredoxin. We characterized this reaction and proposed a model for the productive LepFNR-LepFd2 complex. GENERAL SIGNIFICANCE: Our findings suggest that the interaction of LepFNR with the iron-sulfur protein would be different from the one previously described for the homolog enzymes. This knowledge would be useful for the design of specific LepFNR inhibitors.


Subject(s)
Ferredoxin-NADP Reductase/metabolism , Ferredoxins/metabolism , Leptospira interrogans/enzymology , Amino Acid Sequence , Ferredoxin-NADP Reductase/chemistry , Ferredoxins/chemistry , Models, Molecular , Oxidation-Reduction , Phylogeny , Protein Conformation , Sequence Alignment
11.
Cryobiology ; 85: 47-55, 2018 12.
Article in English | MEDLINE | ID: mdl-30296410

ABSTRACT

Cold storage is a common procedure for liver preservation in a transplant setting. However, during cold ischemia, the liver suffers molecular alterations that can affect its performance. Also, deleterious mechanisms set forth in the storage phase are exacerbated during reperfusion. This study aimed to identify liver proteins associated with injury during cold storage and/or normothermic reperfusion using the isolated perfused rat liver model. Livers from male rats were subjected to either (1) cold storage for 24 h, (2) ex vivo normothermic reperfusion for 90 min or (3) cold storage for 24 h followed by ex vivo normothermic reperfusion for 90 min. Then, the livers were homogenized and proteins were extracted. Protein expression between each experimental group and the control (freshly resected livers) was compared by two-dimensional (2D) gel electrophoresis. Protein identification was carried out by matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF/TOF) using MASCOT as the search engine. 23 proteins were detected with significantly altered levels of expression among the different treatments, including molecular chaperones, antioxidant enzymes, and proteins involved in energy metabolism. Some of them have been postulated as biomarkers for liver damage while others had been identified in other organs subjected to ischemia and reperfusion injury. The whole data set will be a useful resource for studying deleterious molecular mechanisms that result in diminished liver function during storage and subsequent reperfusion.


Subject(s)
Cold Ischemia/adverse effects , Cryopreservation/methods , Liver Transplantation , Liver/metabolism , Reperfusion Injury/metabolism , Animals , Cold Temperature , Male , Proteome/analysis , Proteome/metabolism , Proteomics , Rats
12.
Plant Cell Physiol ; 59(3): 624-636, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29401302

ABSTRACT

Proteins that are to be eliminated must be proficiently recognized by proteolytic systems so that inadvertent elimination of useful proteins is avoided. One mechanism to ensure proper recognition is the presence of N-terminal degradation signals (N-degrons) that are targeted by adaptor proteins (N-recognins). The members of the caseinolytic protease S (ClpS) family of N-recognins identify targets bearing an N-terminal phenylalanine, tyrosine, tryptophan or leucine residue, and then present them to a protease system. This process is known as the 'bacterial N-end rule'. The presence of a ClpS protein in Arabidopsis thaliana chloroplasts (AtClpS1) prompted the hypothesis that the bacterial N-end rule exists in this organelle. However, the specificity of AtClpS1 is unknown. Here we show that AtClpS1 has the ability to recognize bacterial N-degrons, albeit with low affinity. Recognition was assessed by the effect of purified AtClpS1 on the degradation of fluorescent variants bearing bacterial N-degrons. In many bacterial ClpS proteins, a methionine residue acts as a 'gatekeeper' residue, fine-tuning the specificity of the N-recognin. In plants, the amino acid at that position is an arginine. Replacement of this arginine for methionine in recombinant AtClpS1 allows for high-affinity binding to classical N-degrons of the bacterial N-end rule, suggesting that the arginine residue in the substrate-binding site may also act as a gatekeeper for plant substrates.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Chloroplasts/metabolism , Escherichia coli/metabolism , Amino Acid Sequence , Green Fluorescent Proteins/metabolism , Models, Molecular , Protein Binding , Proteolysis , Substrate Specificity
13.
PLoS One ; 12(9): e0184617, 2017.
Article in English | MEDLINE | ID: mdl-28886198

ABSTRACT

Cell penetrating peptides, also known as protein transduction domains, have the capacity to ubiquitously cross cellular membranes carrying many different cargos with negligible cytotoxicity. As a result, they have emerged as a powerful tool for macromolecular delivery-based therapies. In this study, catalytically active bacterial Ferredoxin-NADP+ reductase (LepFNR) and Heme oxygenase (LepHO) fused to the HIV TAT-derived protein transduction peptide (TAT) were efficiently transduced to neuroblastoma SHSY-5Y cells. Proteins entered the cells through an endocytic pathway showing a time/concentration dependent mechanism that was clearly modulated by the nature of the cargo protein. Since ferredoxin-NADP+ reductases and heme oxygenases have been implicated in mechanisms of oxidative stress defense, neuroblastoma cells simultaneously transduced with TAT-LepFNR and TAT-LepHO were challenged by H2O2 incubations to judge the cytoprotective power of these bacterial enzymes. Accumulation of reactive oxygen species was significantly reduced in these transduced neuronal cells. Moreover, measurements of metabolic viability, membrane integrity, and cell survival indicated that these cells showed a better tolerance to oxidative stress. Our results open the possibility for the application of transducible active redox proteins to overcome the damage elicited by oxidative stress in cells and tissues.


Subject(s)
Transduction, Genetic/methods , Bacterial Proteins/metabolism , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Chloroquine/pharmacology , Fluorescent Antibody Technique , Humans , Microscopy, Confocal , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Temperature
14.
PLoS One ; 12(8): e0182535, 2017.
Article in English | MEDLINE | ID: mdl-28771589

ABSTRACT

Heme oxygenase from Leptospira interrogans is an important virulence factor. During catalysis, redox equivalents are provided to this enzyme by the plastidic-type ferredoxin-NADP+ reductase also found in L. interrogans. This process may have evolved to aid this bacterial pathogen to obtain heme-iron from their host and enable successful colonization. Herein we report the crystal structure of the heme oxygenase-heme complex at 1.73 Å resolution. The structure reveals several distinctive features related to its function. A hydrogen bonded network of structural water molecules that extends from the catalytic site to the protein surface was cleared observed. A depression on the surface appears to be the H+ network entrance from the aqueous environment to the catalytic site for O2 activation, a key step in the heme oxygenase reaction. We have performed a mutational analysis of the F157, located at the above-mentioned depression. The mutant enzymes were unable to carry out the complete degradation of heme to biliverdin since the reaction was arrested at the verdoheme stage. We also observed that the stability of the oxyferrous complex, the efficiency of heme hydroxylation and the subsequent conversion to verdoheme was adversely affected. These findings underscore a long-range communication between the outer fringes of the hydrogen-bonded network of structural waters and the heme active site during catalysis. Finally, by analyzing the crystal structures of ferredoxin-NADP+ reductase and heme oxygenase, we propose a model for the productive association of these proteins.


Subject(s)
Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/genetics , Leptospira interrogans/pathogenicity , Mutagenesis, Site-Directed/methods , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation , Hydrogen Bonding , Leptospira interrogans/enzymology , Leptospira interrogans/genetics , Models, Molecular , Protein Conformation , Protein Stability , Virulence Factors/chemistry , Virulence Factors/genetics
15.
J Agric Food Chem ; 64(50): 9475-9487, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27936681

ABSTRACT

Plants constitute a source of novel phytotoxic compounds to be explored in searching for effective and environmentally safe herbicides. From a previous screening of plant extracts for their phytotoxicity, a dichloromethane extract of Ammi visnaga (L.) Lam. was selected for further study. Phytotoxicity-guided fractionation of this extract yielded two furanochromones, khellin and visnagin, for which herbicidal activity had not been described before. Khellin and visnagin were phytotoxic to model species lettuce (Lactuca sativa) and duckweed (Lemna paucicostata), with IC50 values ranging from 110 to 175 µM. These compounds also inhibited the growth and germination of a diverse group of weeds at 0.5 and 1 mM. These weeds included five grasses [ryegrass (Lolium multiflorum), barnyardgrass (Echinocloa crus-galli), crabgrass (Digitaria sanguinalis), foxtail (Setaria italica), and millet (Panicum sp.)] and two broadleaf species [morningglory (Ipomea sp.) and velvetleaf (Abutilon theophrasti)]. During greenhouse studies visnagin was the most active and showed significant contact postemergence herbicidal activity on velvetleaf and crabgrass at 2 kg active ingredient (ai) ha-1. Moreover, its effect at 4 kg ai ha-1 was comparable to the bioherbicide pelargonic acid at the same rate. The mode of action of khellin and visnagin was not a light-dependent process. Both compounds caused membrane destabilization, photosynthetic efficiency reduction, inhibition of cell division, and cell death. These results support the potential of visnagin and, possibly, khellin as bioherbicides or lead molecules for the development of new herbicides.


Subject(s)
Ammi/chemistry , Chromones/chemistry , Furans/chemistry , Herbicides/chemistry , Khellin/chemistry , Biological Assay , Cell Death , Germination/drug effects , Plant Extracts/chemistry , Plant Weeds/drug effects
16.
Biochim Biophys Acta ; 1840(11): 3208-17, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25092651

ABSTRACT

BACKGROUND: Heme oxygenase catalyzes the conversion of heme to iron, carbon monoxide and biliverdin employing oxygen and reducing equivalents. This enzyme is essential for heme-iron utilization and contributes to virulence in Leptospira interrogans. METHODS: A phylogenetic analysis was performed using heme oxygenases sequences from different organisms including saprophytic and pathogenic Leptospira species. L. interrogans heme oxygenase (LepHO) was cloned, overexpressed and purified. The structural and enzymatic properties of LepHO were analyzed by UV-vis spectrophotometry and (1)H NMR. Heme-degrading activity, ferrous iron release and biliverdin production were studied with different redox partners. RESULTS: A plastidic type, high efficiently ferredoxin-NADP(+) reductase (LepFNR) provides the electrons for heme turnover by heme oxygenase in L. interrogans. This catalytic reaction does not require a ferredoxin. Moreover, LepFNR drives the heme degradation to completeness producing free iron and α-biliverdin as the final products. The phylogenetic divergence between heme oxygenases from saprophytic and pathogenic species supports the functional role of this enzyme in L. interrogans pathogenesis. CONCLUSIONS: Heme-iron scavenging by LepHO in L. interrogans requires only LepFNR as redox partner. Thus, we report a new substrate of ferredoxin-NADP(+) reductases different to ferredoxin and flavodoxin, the only recognized protein substrates of this flavoenzyme to date. The results presented here uncover a fundamental step of heme degradation in L. interrogans. GENERAL SIGNIFICANCE: Our findings contribute to understand the heme-iron utilization pathway in Leptospira. Since iron is required for pathogen survival and infectivity, heme degradation pathway may be relevant for therapeutic applications.

17.
BMC Plant Biol ; 14: 228, 2014 Aug 24.
Article in English | MEDLINE | ID: mdl-25149061

ABSTRACT

BACKGROUND: The caseinolytic protease (Clp) is crucial for chloroplast biogenesis and proteostasis. The Arabidopsis Clp consists of two heptameric rings (P and R rings) assembled from nine distinct subunits. Hsp100 chaperones (ClpC1/2 and ClpD) are believed to dock to the axial pores of Clp and then transfer unfolded polypeptides destined to degradation. The adaptor proteins ClpT1 and 2 attach to the protease, apparently blocking the chaperone binding sites. This competition was suggested to regulate Clp activity. Also, monomerization of ClpT1 from dimers in the stroma triggers P and R rings association. So, oligomerization status of ClpT1 seems to control the assembly of the Clp protease. RESULTS: In this work, ClpT1 was obtained in a recombinant form and purified. In solution, it mostly consists of monomers while dimers represent a small fraction of the population. Enrichment of the dimer fraction could only be achieved by stabilization with a crosslinker reagent. We demonstrate that ClpT1 specifically interacts with the Hsp100 chaperones ClpC2 and ClpD. In addition, ClpT1 stimulates the ATPase activity of ClpD by more than 50% when both are present in a 1:1 molar ratio. Outside this optimal proportion, the stimulatory effect of ClpT1 on the ATPase activity of ClpD declines. CONCLUSIONS: The accessory protein ClpT1 behaves as a monomer in solution. It interacts with the chloroplastic Hsp100 chaperones ClpC2 and ClpD and tightly modulates the ATPase activity of the latter. Our results provide new experimental evidence that may contribute to revise and expand the existing models that were proposed to explain the roles of this poorly understood regulatory protein.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Carrier Proteins/metabolism , Heat-Shock Proteins/metabolism , Adenosine Triphosphatases/metabolism , Arabidopsis Proteins/isolation & purification , Carrier Proteins/isolation & purification , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Polymerization , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
19.
Biochim Biophys Acta ; 1837(10): 1730-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24953402

ABSTRACT

Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP(+) reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP(+) coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor-acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution.


Subject(s)
Ferredoxin-NADP Reductase/metabolism , Plants/enzymology , Biocatalysis , Catalytic Domain , Kinetics , Models, Molecular , Plastids
20.
Front Microbiol ; 5: 172, 2014.
Article in English | MEDLINE | ID: mdl-24860555

ABSTRACT

Escherichia coli is one of the organisms of choice for the production of recombinant proteins. Its use as a cell factory is well-established and it has become the most popular expression platform. For this reason, there are many molecular tools and protocols at hand for the high-level production of heterologous proteins, such as a vast catalog of expression plasmids, a great number of engineered strains and many cultivation strategies. We review the different approaches for the synthesis of recombinant proteins in E. coli and discuss recent progress in this ever-growing field.

SELECTION OF CITATIONS
SEARCH DETAIL
...