Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
BMC Cancer ; 24(1): 814, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977944

ABSTRACT

BACKGROUND: Despite a multimodal approach including surgery, chemo- and radiotherapy, the 5-year event-free survival rate for rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in childhood, remains very poor for metastatic patients, mainly due to the selection and proliferation of tumour cells driving resistance mechanisms. Personalised medicine-based protocols using new drugs or targeted therapies in combination with conventional treatments have the potential to enhance the therapeutic effects, while minimizing damage to healthy tissues in a wide range of human malignancies, with several clinical trials being started. In this study, we analysed, for the first time, the antitumour activity of SFX-01, a complex of synthetic d, l-sulforaphane stabilised in alpha-cyclodextrin (Evgen Pharma plc, UK), used as single agent and in combination with irradiation, in four preclinical models of alveolar and embryonal RMS. Indeed, SFX-01 has shown promise in preclinical studies for its ability to modulate cellular pathways involved in inflammation and oxidative stress that are essential to be controlled in cancer treatment. METHODS: RH30, RH4 (alveolar RMS), RD and JR1 (embryonal RMS) cell lines as well as mouse xenograft models of RMS were used to evaluate the biological and molecular effects induced by SFX-01 treatment. Flow cytometry and the modulation of key markers analysed by q-PCR and Western blot were used to assess cell proliferation, apoptosis, autophagy and production of intracellular reactive oxygen species (ROS) in RMS cells exposed to SFX-01. The ability to migrate and invade was also investigated with specific assays. The possible synergistic effects between SFX-01 and ionising radiation (IR) was studied in both the in vitro and in vivo studies. Student's t-test or two-way ANOVA were used to test the statistical significance of two or more comparisons, respectively. RESULTS: SFX-01 treatment exhibited cytostatic and cytotoxic effects, mediated by G2 cell cycle arrest, apoptosis induction and suppression of autophagy. Moreover, SFX-01 was able to inhibit the formation and the proliferation of 3D tumorspheres as monotherapy and in combination with IR. Finally, SFX-01, when orally administered as single agent, displayed a pattern of efficacy at reducing the growth of tumour masses in RMS xenograft mouse models; when combined with a radiotherapy regime, it was observed to act synergistically, resulting in a more positive outcome than would be expected by adding each exposure alone. CONCLUSIONS: In summary, our results provide evidence for the antitumour properties of SFX-01 in preclinical models of RMS tumours, both as a standalone treatment and in combination with irradiation. These forthcoming findings are crucial for deeper investigations of SFX-01 molecular mechanisms against RMS and for setting up clinical trials in RMS patients in order to use the SFX-01/IR co-treatment as a promising therapeutic approach, particularly in the clinical management of aggressive RMS disease.


Subject(s)
Apoptosis , Cell Proliferation , Rhabdomyosarcoma , Xenograft Model Antitumor Assays , Animals , Humans , Mice , Cell Line, Tumor , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Rhabdomyosarcoma/radiotherapy , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/pathology , Radiation, Ionizing , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Autophagy/drug effects , Autophagy/radiation effects , Combined Modality Therapy
2.
Int J Mol Sci ; 24(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37511139

ABSTRACT

The global rise of single-use throw-away plastic products has elicited a massive increase in the nano/microplastics (N/MPLs) exposure burden in humans. Recently, it has been demonstrated that disposable period products may release N/MPLs with usage, which represents a potential threat to women's health which has not been scientifically addressed yet. By using polyethyl ene (PE) particles (200 nm to 9 µm), we showed that acute exposure to a high concentration of N/MPLs induced cell toxicity in vaginal keratinocytes after effective cellular uptake, as viability and apoptosis data suggest, along with transmission electron microscopy (TEM) observations. The internalised N/MPLs altered the expression of junctional and adherence proteins and the organisation of the actin cortex, influencing the level of genes involved in oxidative stress signalling pathways and that of miRNAs related to epithelial barrier function. When the exposure to PE N/MPLs was discontinued or became chronic, cells were able to recover from the negative effects on viability and differentiation/proliferation gene expression in a few days. However, in all cases, PE N/MPL exposure prompted a sustained alteration of DNA methyltransferase and DNA demethylase expression, which might impact epigenetic regulation processes, leading to accelerated cell ageing and inflammation, or the occurrence of malignant transformation.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Female , Microplastics/toxicity , Plastics , Polyethylene , Epigenesis, Genetic , Keratinocytes/chemistry , Water Pollutants, Chemical/toxicity
3.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216279

ABSTRACT

Microgravity impairs tissue organization and critical pathways involved in the cell-microenvironment interplay, where fibroblasts have a critical role. We exposed dermal fibroblasts to simulated microgravity by means of a Random Positioning Machine (RPM), a device that reproduces conditions of weightlessness. Molecular and structural changes were analyzed and compared to control samples growing in a normal gravity field. Simulated microgravity impairs fibroblast conversion into myofibroblast and inhibits their migratory properties. Consequently, the normal interplay between fibroblasts and keratinocytes were remarkably altered in 3D co-culture experiments, giving rise to several ultra-structural abnormalities. Such phenotypic changes are associated with down-regulation of α-SMA that translocate in the nucleoplasm, altogether with the concomitant modification of the actin-vinculin apparatus. Noticeably, the stress associated with weightlessness induced oxidative damage, which seemed to concur with such modifications. These findings disclose new opportunities to establish antioxidant strategies that counteract the microgravity-induced disruptive effects on fibroblasts and tissue organization.


Subject(s)
Weightlessness , Coculture Techniques , Fibroblasts/metabolism , Keratinocytes , Phenotype , Weightlessness Simulation
4.
Cells ; 10(11)2021 10 30.
Article in English | MEDLINE | ID: mdl-34831178

ABSTRACT

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood. Recently, we demonstrated the overexpression of both DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B) in RMS tumour biopsies and cell lines compared to normal skeletal muscle. Radiotherapy may often fail due to the abnormal expression of some molecules able to drive resistance mechanisms. The aim of this study was to analyse the involvement of DNMT3A and DNMT3B in radioresistance in RMS. RNA interference experiments against DNMT3A/3B were performed in embryonal RMS cells, upon ionizing radiation (IR) exposure and the effects of the combined treatment on RMS cells were analysed. DNMT3A and DNMT3B knocking down increased the sensitivity of RMS cells to IR, as indicated by the drastic decrease of colony formation ability. Interestingly, DNMT3A/3B act in two different ways: DNMT3A silencing triggers the cellular senescence program by up-regulating p16 and p21, whilst DNMT3B depletion induces significant DNA damage and impairs the DNA repair machinery (ATM, DNA-PKcs and Rad51 reduction). Our findings demonstrate for the first time that DNMT3A and DNMT3B overexpression may contribute to radiotherapy failure, and their inhibition might be a promising radiosensitizing strategy, mainly in the treatment of patients with metastatic or recurrent RMS tumours.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A/metabolism , Radiation Tolerance , Rhabdomyosarcoma, Embryonal/radiotherapy , Cell Cycle/radiation effects , Cell Differentiation/radiation effects , Cell Line, Tumor , Cell Proliferation/radiation effects , Cellular Senescence/radiation effects , Clone Cells , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Damage , DNA Methyltransferase 3A/genetics , Enzyme Activation/radiation effects , Gene Expression Regulation, Neoplastic , Gene Silencing/radiation effects , Histones/metabolism , Humans , Muscle Development/radiation effects , Radiation Tolerance/genetics , Radiation, Ionizing , Rhabdomyosarcoma, Embryonal/genetics , Up-Regulation/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , DNA Methyltransferase 3B
5.
Antibiotics (Basel) ; 10(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34680773

ABSTRACT

Chlorhexidine digluconate (CHX) is considered the gold standard for oral cavity antiseptic treatment. Nevertheless, several in vitro studies have reported detrimental effects in oral tissue repair. The aim of the present study was to evaluate the in vivo effect of post-surgical CHX mouth rinse on gingival tissue (G) 24 h after injury. G biopsies were obtained in three patients 24 h after surgery with the indication of post-surgical 0.12% CHX use and were compared with those obtained from the same patients without any antiseptic use. Changes in collagen production, cell proliferation, and apoptosis were examined by histological and Ki-67/P53 immunohistochemical analysis. Fibrotic markers (COL1A1, αSMA), proapoptotic protein (BAX) expression, and wound healing-related gene modulation (RAC1, SERPINE1, TIMP1) were analyzed by quantitative real-time PCR analysis. CHX was able to reduce cellular proliferation and increase collagen deposition, proapoptotic molecule and fibrotic marker expression, and myofibroblast differentiation, reduce expression of RAC1 and trigger expression of SERPINE1 and TIMP1, showing "scar wound healing response" pattern. This study assessed for the first time the in vivo effects of CHX on gingival tissue. The demonstration of a CHX-induced fibrotic transformation, leading to scar repair, supports the need for new post-surgical clinical protocols based on a strategic and personalized use of CHX.

6.
Genes (Basel) ; 12(9)2021 09 10.
Article in English | MEDLINE | ID: mdl-34573382

ABSTRACT

Epithelial ovarian cancer (EOC) outpaces all the other forms of the female reproductive system malignancies. MicroRNAs have emerged as promising predictive biomarkers to therapeutic treatments as their expression might characterize the tumor stage or grade. In EOC, miR-200c is considered a master regulator of oncogenes or tumor suppressors. To investigate novel miR-200c-3p target genes involved in EOC tumorigenesis, we evaluated the association between this miRNA and the mRNA expression of several potential target genes by RNA-seq data of both 46 EOC cell lines from Cancer Cell line Encyclopedia (CCLE) and 456 EOC patient bio-specimens from The Cancer Genome Atlas (TCGA). Both analyses showed a significant anticorrelation between miR-200c-3p and the protein phosphatase 3 catalytic subunit γ of calcineurin (PPP3CC) levels involved in the apoptosis pathway. Quantitative mRNA expression analysis in patient biopsies confirmed the inverse correlation between miR-200c-3p and PPP3CC levels. In vitro regulation of PPP3CC expression through miR-200c-3p and RNA interference technology led to a concomitant modulation of BCL2- and p-AKT-related pathways, suggesting the tumor suppressive role of PPP3CC in EOC. Our results suggest that inhibition of high expression of miR-200c-3p in EOC might lead to overexpression of the tumor suppressor PPP3CC and subsequent induction of apoptosis in EOC patients.


Subject(s)
Apoptosis/genetics , Calcineurin/genetics , Carcinoma, Ovarian Epithelial/pathology , MicroRNAs/physiology , Ovarian Neoplasms/pathology , Biopsy , Carcinoma, Ovarian Epithelial/genetics , Case-Control Studies , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Ovarian Neoplasms/genetics , RNA Interference/physiology , Tumor Cells, Cultured
7.
PLoS One ; 16(9): e0257070, 2021.
Article in English | MEDLINE | ID: mdl-34534238

ABSTRACT

Adipose-derived mesenchymal stem cells (ASCs) are promising therapeutic tools in regenerative medicine because they possess self-renewal, differentiation and immunomodulatory capacities. After isolation, ASCs are passaged multiple times in vitro passages to obtain a sufficient amount of cells for clinical applications. During this time-consuming procedure, ASCs become senescent and less proliferative, compromising their clinical efficacy. Here, we sought to investigate how in vitro passages impact ASC proliferation/senescence and expression of immune regulatory proteins. MicroRNAs are pivotal regulators of ASC physiology. Particularly, miR-200c is known to maintain pluripotency and targets the immune checkpoint Programmed death-ligand 1 (PD-L1). We therefore investigated its involvement in these critical characteristics of ASCs during in vitro passages. We found that when transiently expressed, miR-200c-3p promotes proliferation, maintains stemness, and contrasts senescence in late passaged ASCs. Additionally, this miRNA modulates PD-L1 and Indoleamine 2,3-Dioxygenase (IDO1) expression, thus most likely interfering with the immunoregulatory capacity of ASCs. Based on our results, we suggest that expression of miR-200c-3p may prime ASC towards a self-renewing phenotype by improving their in vitro expansion. Contrarily, its inhibition is associated with senescence, reduced proliferation and induction of immune regulators. Our data underline the potential use of miR-200c-3p as a switch for ASCs reprogramming and their clinical application.


Subject(s)
Adipose Tissue/cytology , Cellular Senescence , MicroRNAs/metabolism , Stem Cells/metabolism , B7-H1 Antigen/metabolism , Biomarkers/metabolism , Cell Proliferation , Gene Expression Regulation , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , MicroRNAs/genetics , Tumor Suppressor Protein p53/metabolism
8.
Front Cell Dev Biol ; 9: 691644, 2021.
Article in English | MEDLINE | ID: mdl-34422814

ABSTRACT

Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by encoding oncogenic proteins, and/or by modifying the microenvironment, as well as by conveying genomic instability to accelerate cancer development. In addition, viral immune evasion mechanisms may compromise developmental pathways to accelerate tumor growth. Viruses achieve this by influencing both coding and non-coding gene regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate developmental pathways is crucial to understanding viral tumorigenesis. Many currently available antiviral therapies target viral lytic cycle replication but with low efficacy and severe side effects. A greater understanding of the cross-signaling between oncogenic viruses and developmental pathways will improve the efficacy of next-generation inhibitors and pave the way to more targeted antiviral therapies.

9.
Biology (Basel) ; 10(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063745

ABSTRACT

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare and complex disease defined by congenital aplasia of the vagina and uterus in 46,XX women, often associated with kidney and urinary tract anomalies. The aetiopathogenesis of MRKH syndrome is still largely unknown. Herein, we investigated the role of selected candidate genes in the aetiopathogenesis of MRKH syndrome, with a focus on PRKX, which encodes for protein kinase X. Through RT-qPCR analyses performed on vaginal dimple samples from patients, and principal component analysis (PCA), we highlighted a phenotype-related expression pattern of PRKX, MUC1, HOXC8 and GREB1L in MRKH patients. By using an in vitro approach, we proved that PRKX ectopic overexpression in a cell model of vaginal keratinocytes promotes cell motility through epithelial-to-mesenchymal transition (EMT) activation, a fundamental process in urogenital tract morphogenesis. Moreover, our findings showed that PRKX upregulation in vaginal keratinocytes is able to affect transcriptional levels of HOX genes, implicated in urinary and genital tract development. Our study identified the dysregulation of PRKX expression as a possible molecular cause for MRKH syndrome. Moreover, we propose the specific role of PRKX in vaginal keratinocyte biology as one of the possible mechanisms underlying this complex disease.

10.
Cells ; 10(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33804458

ABSTRACT

Conventional/targeted chemotherapies and ionizing radiation (IR) are being used both as monotherapies and in combination for the treatment of epithelial ovarian cancer (EOC). Several studies show that these therapies might favor oncogenic signaling and impede anti-tumor responses. MiR-200c is considered a master regulator of EOC-related oncogenes. In this study, we sought to investigate if chemotherapy and IR could influence the expression of miR-200c-3p and its target genes, like the immune checkpoint PD-L1 and other oncogenes in a cohort of EOC patients' biopsies. Indeed, PD-L1 expression was induced, while miR-200c-3p was significantly reduced in these biopsies post-therapy. The effect of miR-200c-3p target genes was assessed in miR-200c transfected SKOV3 cells untreated and treated with olaparib and IR alone. Under all experimental conditions, miR-200c-3p concomitantly reduced PD-L1, c-Myc and ß-catenin expression and sensitized ovarian cancer cells to olaparib and irradiation. In silico analyses further confirmed the anti-correlation between miR-200c-3p with c-Myc and ß-catenin in 46 OC cell lines and showed that a higher miR-200c-3p expression associates with a less tumorigenic microenvironment. These findings provide new insights into how miR-200c-3p could be used to hold in check the adverse effects of conventional chemotherapy, targeted therapy and radiation therapy, and offer a novel therapeutic strategy for EOC.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , Genes, myc/genetics , Immune Checkpoint Inhibitors/therapeutic use , MicroRNAs/metabolism , Oncogenes/genetics , beta Catenin/metabolism , Adult , Carcinoma, Ovarian Epithelial/pathology , Cell Proliferation , Down-Regulation , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Middle Aged
11.
Cancers (Basel) ; 13(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806232

ABSTRACT

Ovarian cancer (OC) is the most aggressive gynecological tumor worldwide and, notwithstanding the increment in conventional treatments, many resistance mechanisms arise, this leading to cure failure and patient death. So, the use of novel adjuvant drugs able to counteract these pathways is urgently needed to improve patient overall survival. A growing interest is focused on epigenetic drugs for cancer therapy, such as Bromodomain and Extra-Terminal motif inhibitors (BETi). Here, we investigate the antitumor effects of OTX015, a novel BETi, as a single agent or in combination with ionizing radiation (IR) in OC cellular models. OTX015 treatment significantly reduced tumor cell proliferation by triggering cell cycle arrest and apoptosis that were linked to nucleolar stress and DNA damage. OTX015 impaired migration capacity and potentiated IR effects by reducing the expression of different drivers of cancer resistance mechanisms, including GNL3 gene, whose expression was found to be significantly higher in OC biopsies than in normal ovarian tissues. Gene specific knocking down and computational network analysis confirmed the centrality of GNL3 in OTX015-mediated OC antitumor effects. Altogether, our findings suggest OTX015 as an effective option to improve therapeutic strategies and overcome the development of resistant cancer cells in patients with OC.

12.
J Clin Periodontol ; 48(5): 705-720, 2021 05.
Article in English | MEDLINE | ID: mdl-33527447

ABSTRACT

AIM: Our aim was to evaluate gene expression profiling of fibroblasts from human alveolar mucosa (M), buccal attached gingiva (G) and palatal (P) tissues during early wound healing, correlating it with clinical response. MATERIALS AND METHODS: M, G and P biopsies were harvested from six patients at baseline and 24 hr after surgery. Clinical response was evaluated through Early wound Healing Score (EHS). Fibrotic markers expression and autophagy were assessed on fibroblasts isolated from those tissues by Western blot and qRT-PCR. Fibroblasts from two patients were subjected to RT2 profiler array, followed by network analysis of the differentially expressed genes. The expression of key genes was validated with qRT-PCR on all patients. RESULTS: At 24 hr after surgery, EHS was higher in P and G than in M. In line with our clinical results, no autophagy and myofibroblast differentiation were observed in G and P. We observed significant variations in mRNA expression of key genes: RAC1, SERPINE1 and TIMP1, involved in scar formation; CDH1, ITGA4 and ITGB5, contributing to myofibroblast differentiation; and IL6 and CXCL1, involved in inflammation. CONCLUSIONS: We identified some genes involved in periodontal soft tissue clinical outcome, providing novel insights into the molecular mechanisms of oral repair (ClinicalTrial.gov-NCT04202822).


Subject(s)
Transcriptome , Wound Healing , Autophagy , Fibroblasts , Gingiva , Humans , Wound Healing/genetics
13.
Sci Rep ; 11(1): 448, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33432050

ABSTRACT

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare disease, characterised by the aplasia of vagina and uterus in women with a 46,XX karyotype. Most cases are sporadic, but familial recurrence has also been described. Herein, we investigated an Italian cohort of 36 unrelated MRKH patients to explore the presence of pathogenic copy number variations (CNVs) by array-CGH and MLPA assays. On the whole, aberrations were found in 9/36 (25%) patients. Interestingly, one patient showed a novel heterozygous microduplication at Xp22.33, not yet described in MRKH patients, containing the PRKX gene. Moreover, a novel duplication of a specific SHOX enhancer was highlighted by MLPA. To predict the potential significance of CNVs in MRKH pathogenesis, we provided a network analysis for protein-coding genes found in the altered genomic regions. Although not all of these genes taken individually showed a clear clinical significance, their combination in a computational network highlighted that the most relevant biological connections are related to the anatomical structure development. In conclusion, the results described in the present study identified novel genetic alterations and interactions that may be likely involved in MRKH phenotype determination, so adding new insights into the complex puzzle of MRKH disease.


Subject(s)
46, XX Disorders of Sex Development/genetics , Congenital Abnormalities/genetics , DNA Copy Number Variations/genetics , Mullerian Ducts/abnormalities , Protein Interaction Maps/genetics , Adolescent , Adult , Chromosome Aberrations , Cohort Studies , Female , Humans , Italy , Middle Aged , Protein Serine-Threonine Kinases/genetics , Rare Diseases , Short Stature Homeobox Protein/genetics , Young Adult
14.
Biomolecules ; 12(1)2021 12 24.
Article in English | MEDLINE | ID: mdl-35053169

ABSTRACT

Coronavirus disease 2019 (COVID-19), the pandemic infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents with an extremely heterogeneous spectrum of symptoms and signs. The clinical manifestations seem to be correlated with disease severity. COVID-19 susceptibility and mortality show a significant sex imbalance, with men being more prone to infection and showing a higher rate of hospitalization and mortality compared to women. Such variability can be ascribed to both sex-related biological factors and gender-related behavioral cues. This review will discuss the potential mechanisms accounting for sex/gender influence in vulnerability to COVID-19. Cardiovascular diseases play a central role in determining COVID-19 outcome, whether they are pre-existent or arose upon infection. We will pay particular attention to the impact of sex and gender on cardiovascular manifestations related to COVID-19. Finally, we will discuss the sex-dependent variability in some biomarkers for the evaluation of COVID-19 infection and prognosis. The aim of this work is to highlight the significance of gendered medicine in setting up personalized programs for COVID-19 prevention, clinical evaluation and treatment.


Subject(s)
COVID-19 , Cardiovascular Diseases , Pandemics , SARS-CoV-2/metabolism , Sex Characteristics , COVID-19/complications , COVID-19/epidemiology , COVID-19/metabolism , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Female , Humans , Male , Risk Factors , Severity of Illness Index , Sex Factors
15.
Front Cell Dev Biol ; 8: 236, 2020.
Article in English | MEDLINE | ID: mdl-32363193

ABSTRACT

Adipose-derived stem cells (ASCs) represent a promising tool for soft tissue engineering as well as for clinical treatment of inflammatory and autoimmune pathologies. The well-characterized multi-differentiation potential and self-renewal properties of ASCs are coupled with their immunomodulatory ability in providing therapeutic efficacy. Yet, their impact in immune or inflammatory disorders might rely both on cell contact-dependent mechanisms and paracrine effects, resulting in the release of various soluble factors that regulate immune cells functions. Despite the widespread use of ASCs in clinical trials addressing several pathologies, the pathophysiological mechanisms at the basis of their clinical use have been not yet fully investigated. In particular, a thorough analysis of ASC immunomodulatory potential is mandatory. Here we explore such molecular mechanisms involved in ASC immunomodulatory properties, emphasizing the relevance of the milieu composition. We review the potential clinical use of ASC secretome as a mediator for immunomodulation, with a focus on in vitro and in vivo environmental conditions affecting clinical outcome. We describe some potential strategies for optimization of ASCs immunomodulatory capacity in clinical settings, which act either on adult stem cells gene expression and local microenvironment. Finally, we discuss the limitations of both allogeneic and autologous ASC use, highlighting the issues to be fixed in order to significantly improve the efficacy of ASC-based cell therapy.

16.
Front Genet ; 11: 346, 2020.
Article in English | MEDLINE | ID: mdl-32351540

ABSTRACT

Adult adipose tissue-derived mesenchymal stem cells (ASCs) constitute a vital population of multipotent cells capable of differentiating into numerous end-organ phenotypes. However, scientific and translational endeavors to harness the regenerative potential of ASCs are currently limited by an incomplete understanding of the mechanisms that determine cell-lineage commitment and stemness. In the current study, we used reduced representation bisulfite sequencing (RRBS) analysis to identify epigenetic gene targets and cellular processes that are responsive to 5'-azacitidine (5'-AZA). We describe specific changes to DNA methylation of ASCs, uncovering pathways likely associated with the enhancement of their proliferative capacity. We identified 4,797 differentially methylated regions (FDR < 0.05) associated with 3,625 genes, of which 1,584 DMRs annotated to the promoter region. Gene set enrichment of differentially methylated promoters identified "phagocytosis," "type 2 diabetes," and "metabolic pathways" as disproportionately hypomethylated, whereas "adipocyte differentiation" was the most-enriched pathway among hyper-methylated gene promoters. Weighted coexpression network analysis of DMRs identified clusters associated with cellular proliferation and other developmental programs. Furthermore, the ELK4 binding site was disproportionately hyper-methylated within the promoters of genes associated with AKT signaling. Overall, this study offers numerous preliminary insights into the epigenetic landscape that influences the regenerative capacity of human ASCs.

17.
Cancer Lett ; 479: 71-88, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32200036

ABSTRACT

The antitumour effects of OTX015, a first-in-class BET inhibitor (BETi), were investigated as a single agent or in combination with ionizing radiation (IR) in preclinical in vitro models of rhabdomyosarcoma (RMS), the most common childhood soft tissue sarcoma. Herein, we demonstrated the upregulation of BET Bromodomain gene expression in RMS tumour biopsies and cell lines compared to normal skeletal muscle. In vitro experiments showed that OTX015 significantly reduced RMS cell proliferation by altering cell cycle modulators and apoptotic related proteins due to the accumulation of DNA breaks that cells are unable to repair. Interestingly, OTX015 also impaired migration capacity and tumour-sphere architecture by downregulating pro-stemness genes and was able to potentiate ionizing radiation effects by reducing the expression of different drivers of tumour dissemination and resistance mechanisms, including the GNL3 gene, that we correlated for the first time with the RMS phenotype. In conclusion, our research sheds further light on the molecular events of OTX015 action against RMS cells and indicates this novel BETi as an effective option to improve therapeutic strategies and overcome the development of resistant cancer cells in patients with RMS.


Subject(s)
Acetanilides/pharmacology , Antineoplastic Agents/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Proteins/genetics , Radiation Tolerance/drug effects , Rhabdomyosarcoma, Alveolar/genetics , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , GTP-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Nuclear Proteins/genetics , Proteins/antagonists & inhibitors , Rhabdomyosarcoma, Alveolar/therapy
18.
J Exp Clin Cancer Res ; 39(1): 3, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898520

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is the most lethal gynecological malignancy and the second leading cause of cancer-related death in women. Treatment with PARP inhibitors (PARPi), such as Olaparib, has been recently introduced for OC patients, but resistance may occur and underlying mechanisms are still poorly understood. The aim of this study is to identify target genes within the tumor cells that might cause resistance to Olaparib. We focused on Neuropilin 1 (NRP1), a transmembrane receptor expressed in OC and correlated with poor survival, which has been also proposed as a key molecule in OC multidrug resistance. METHODS: Using three OC cell lines (UWB, UWB-BRCA and SKOV3) as model systems, we evaluated the biological and molecular effects of Olaparib on OC cell growth, cell cycle, DNA damage and apoptosis/autophagy induction, through MTT and colony forming assays, flow cytometry, immunofluorescence and Western blot analyses. We evaluated NRP1 expression in OC specimens and cell lines by Western blot and qRT-PCR, and used RNA interference to selectively inhibit NRP1. To identify miR-200c as a regulator of NRP1, we used miRNA target prediction algorithms and Pearsons' correlation analysis in biopsies from OC patients. Then, we used a stable transfection approach to overexpress miR-200c in Olaparib-resistant cells. RESULTS: We observed that NRP1 is expressed at high levels in resistant cells (SKOV3) and is upmodulated in partially sensitive cells (UWB-BRCA) upon prolonged Olaparib treatment, leading to poor drug response. Our results show that the selective inhibition of NRP1 is able to overcome Olaparib resistance in SKOV3 cells. Moreover, we demonstrated that miR-200c can target NRP1 in OC cells, causing its downmodulation, and that miR-200c overexpression is a valid approach to restore Olaparib sensitivity in OC resistant cells. CONCLUSIONS: These data demonstrate that miR-200c significantly enhanced the anti-cancer efficacy of Olaparib in drug-resistant OC cells. Thus, the combination of Olaparib with miRNA-based therapy may represent a promising treatment for drug resistant OC, and our data may help in designing novel precision medicine trials for optimizing the clinical use of PARPi.


Subject(s)
Drug Resistance, Neoplasm , MicroRNAs/genetics , Neuropilin-1/genetics , Neuropilin-1/metabolism , Ovarian Neoplasms/genetics , Phthalazines/pharmacology , Piperazines/pharmacology , 3' Untranslated Regions , Aged , Aged, 80 and over , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MicroRNAs/antagonists & inhibitors , Middle Aged , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , RNA, Small Interfering/pharmacology , Up-Regulation/drug effects
19.
Stem Cells Int ; 2019: 6264931, 2019.
Article in English | MEDLINE | ID: mdl-30723507

ABSTRACT

Notch signaling is frequently activated in ovarian cancer (OC) and contributes to the proliferation and survival of cultured OC cells as well as to tumor formation and angiogenesis in xenograft models. Several studies demonstrate that Notch3 expression renders cancer cells more resistant to carboplatin, contributing to chemoresistance and poor survival of OC-bearing patients. This suggests that Notch3 can represent both a biomarker and a target for therapeutic interventions in OC patients. Although it is still unclear how chemoresistance arises, different lines of evidence support a critical role of cancer stem cells (CSCs), suggesting that CSC targeting by innovative therapeutic approaches might represent a promising tool to efficiently reduce OC recurrence. To date, CSC-directed therapies in OC tumors are mainly targeted to the inhibition of CSC-related signaling pathways, including Notch. As it is increasingly evident the involvement of Notch signaling, and in particular of Notch3, in regulating stem-like cell maintenance and expansion in several tumors, here we provide an overview of the current knowledge of Notch3 role in CSC-mediated OC chemoresistance, finally exploring the potential design of innovative Notch3 inhibition-based therapies for OC treatment, aimed at eradicating tumor through the suppression of CSCs.

20.
J Cancer Res Clin Oncol ; 145(1): 137-152, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30357520

ABSTRACT

PURPOSE: PARP inhibitors (PARPi) are used in a wide range of human solid tumours but a limited evidence is reported in rhabdomyosarcoma (RMS), the most frequent childhood soft-tissue sarcoma. The cellular and molecular effects of Olaparib, a specific PARP1/2 inhibitor, and AZD2461, a newly synthesized PARP1/2/3 inhibitor, were assessed in alveolar and embryonal RMS cells both as single-agent and in combination with ionizing radiation (IR). METHODS: Cell viability was monitored by trypan blue exclusion dye assays. Cell cycle progression and apoptosis were measured by flow cytometry, and alterations of specific molecular markers were investigated by, Real Time PCR, Western blotting and immunofluorescence experiments. Irradiations were carried out at a dose rate of 2 Gy (190 UM/min) or 4 Gy (380 UM/min). Radiosensitivity was assessed by using clonogenic assays. RESULTS: Olaparib and AZD2461 dose-dependently reduced growth of both RH30 and RD cells by arresting growth at G2/M phase and by modulating the expression, activation and subcellular localization of specific cell cycle regulators. Downregulation of phospho-AKT levels and accumulation of γH2AX, a specific marker of DNA damage, were significantly and persistently induced by Olaparib and AZD2461 exposure, this leading to apoptosis-related cell death. Both PARPi significantly enhanced the effects of IR by accumulating DNA damage, increasing G2 arrest and drastically reducing the clonogenic capacity of RMS-cotreated cells. CONCLUSIONS: This study suggests that the combined exposure to PARPi and IR might display a role in the treatment of RMS tumours compared with single-agent exposure, since stronger cytotoxic effects are induced, and compensatory survival mechanisms are prevented.


Subject(s)
Cell Division/drug effects , Cell Survival/drug effects , Phthalazines/pharmacology , Piperazines/pharmacology , Piperidines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Radiation Tolerance/drug effects , Radiation, Ionizing , Rhabdomyosarcoma, Alveolar/pathology , Rhabdomyosarcoma, Embryonal/pathology , Apoptosis/drug effects , Blotting, Western , Cell Division/radiation effects , Cell Line, Tumor , Cell Survival/radiation effects , Child , DNA Damage , Dose-Response Relationship, Drug , Flow Cytometry , Fluorescent Antibody Technique , Histones/metabolism , Humans , Isoenzymes/genetics , Phthalazines/administration & dosage , Piperazines/administration & dosage , Piperidines/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...