Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38794128

ABSTRACT

BACKGROUND: Indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO) are the two principals enzymes involved in the catabolization of tryptophan (Trp) into kynurenine (Kyn). Despite their well-established role in the immune escape, their involvement in angiogenesis remains uncertain. We aimed to characterize TDO and IDO1 in human umbilical venular endothelial cells (HUVECs) and human endothelial colony-forming cells (ECFCs). METHODS: qRT-PCR and immunofluorescence were used for TDO and IDO1 expression while their activity was measured using ELISA assays. Cell proliferation was examined via MTT tests and in in vitro angiogenesis by capillary morphogenesis. RESULTS: HUVECs and ECFCs expressed TDO and IDO1. Treatment with the selective TDO inhibitor 680C91 significantly impaired HUVEC proliferation and 3D-tube formation in response to VEGF-A, while IDO1 inhibition showed no effect. VEGF-induced mTor phosphorylation and Kyn production were hindered by 680C91. ECFC morphogenesis was also inhibited by 680C91. Co-culturing HUVECs with A375 induced TDO up-regulation in both cell types, whose inhibition reduced MMP9 activity and prevented c-Myc and E2f1 upregulation. CONCLUSIONS: HUVECs and ECFCs express the key enzymes of the kynurenine pathway. Significantly, TDO emerges as a pivotal player in in vitro proliferation and capillary morphogenesis, suggesting a potential pathophysiological role in angiogenesis beyond its well-known immunomodulatory effects.

2.
Front Pharmacol ; 13: 911019, 2022.
Article in English | MEDLINE | ID: mdl-35847038

ABSTRACT

In addition to its well-established immunosuppressive actions, tryptophan 2,3-dioxygenase (TDO) appears to elicit direct effects on tumor cell function. Although TDO has been associated with cancer stemness, its involvement in melanoma stem cell biology remains largely unknown. Since we showed that by upregulating TDO, dexamethasone (dex) promotes proliferation and migration of SK-Mel-28 human melanoma cells, we sought to investigate dex effects on melanoma spherogenesis and stemness, and whether these events are mediated by TDO. We demonstrate here that dex significantly upregulates TDO in A375, a more aggressive melanoma cell line, confirming that dex effects are not limited to SK-Mel-28 cells. Moreover, dex stimulates spherogenesis of both cell lines, which is mediated by TDO, evident by its suppression with 680C91, a TDO inhibitor. The formed melanospheres appear to be enriched with embryonic stem cell marker mRNAs, the expression of which is potentiated by dex. Expression of cancer stem cell markers (CD133, CD44, ganglioside GD2) was significantly increased in A375 spheres, as detected by flow cytometry. Taken together, our results suggest that TDO could represent a promising target in the management of melanoma and that dex, routinely used as a co-medication also in advanced melanoma, may stimulate melanoma cell function/tumor-supporting properties, a rather debilitating and undesired side effect.

3.
J Reprod Immunol ; 147: 103361, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34365162

ABSTRACT

The placenta represents the maternal-fetal vascular interface. It is capable of supplying the bioenergetic needs of the developing conceptus. It is composed of different cell types that engage in highly varied functions, ranging from attachment, invasion and vascular remodeling to cell fusion, hormone production, and nutrient transport. A deep knowledge of the immunological mechanisms responsible for maintaining an active tolerance towards an allogeneic fetus and the anti-inflammatory properties of the placenta can be useful to clarify the pathogenesis of adverse events in pregnancy. While the systemic mechanisms of this immunological regulation in pregnancy have been well studied, the metabolic processes involved in the placental immune response are still poorly understood. The aim of this review is to summarize the most important information concerning the immune regulation in pregnancy, focusing on the role of tryptophan (Trp) catabolism performed by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) in the placenta.


Subject(s)
Immune Tolerance , Placenta/immunology , Tryptophan/metabolism , Female , Histocompatibility, Maternal-Fetal , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Maternal-Fetal Exchange/immunology , Metabolic Networks and Pathways , Placenta/metabolism , Pregnancy , Tryptophan Oxygenase/metabolism
4.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806305

ABSTRACT

Tryptophan-2,3-dioxygenase (TDO) is one of the key tryptophan-catabolizing enzymes with immunoregulatory properties in cancer. Contrary to expectation, clinical trials showed that inhibitors of the ubiquitously expressed enzyme, indoleamine-2,3-dioxygenase-1 (IDO1), do not provide benefits in melanoma patients. This prompted the hypothesis that TDO may be a more attractive target. Because the promoter of TDO harbors glucocorticoid response elements (GREs), we aimed to assess whether dexamethasone (dex), a commonly used glucocorticoid, modulates TDO expression by means of RT-PCR and immunofluorescence and function by assessing cell proliferation and migration as well as metalloproteinase activity. Our results show that, in SK-Mel-28 melanoma cells, dex up-regulated TDO and its downstream effector aryl hydrocarbon receptor (AHR) but not IDO1. Furthermore, dex stimulated cellular proliferation and migration and potentiated MMP2 activity. These effects were inhibited by the selective TDO inhibitor 680C91 and enhanced by IDO1 inhibitors. Taken together, our results demonstrate that the metastatic melanoma cell line SK-Mel-28 possesses a functional TDO which can also modulate cancer cell phenotype directly rather than through immune suppression. Thus, TDO appears to be a promising, tractable target in the management or the treatment of melanoma progression.

5.
Diabetes Res Clin Pract ; 170: 108528, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33157116

ABSTRACT

AIM: Cardiovascular disease (CVD) is prevalent in women after menopause, which may be associated with obesity, insulin resistance and metaflammation. Despite the recognized role of immunological mechanisms in vascular remodeling, the role of dendritic cells (DCs) is still unclear. The aim was to characterize monocyte-derived DCs (Mo-DC) in post-menopausal patients with type 2 diabetes (T2DM) and obese woman, without clinical manifestations of atherosclerosis. METHODS: Obese post-menopausal women with or without T2DM were enrolled and were compared to age-matched healthy women. DCs obtained from patients were phenotypically and functionally characterized by flow cytometry and mixed lymphocyte reaction. MRNA integrins expression was assessed by real time RT-PCR; circulating fetuin-A and adiponectin levels were measured by ELISA. RESULTS: Phenotypic dysregulation of Mo-DC reported was related to a defective allogenic lymphocyte stimulation and to an increased mRNA of CD11c, CD18 and DC-SIGN/CD209 which regulate their adhesion to vascular wall cells. Fetuin-A and adiponectin levels were significantly altered and negatively correlated. Hyperglycaemia significantly impaired CD14+ transdifferentiation into Mo-DC. CONCLUSIONS: These data show a dysfunction of Mo-DCs obtained from precursors isolated from T2DM obese post-menopausal woman without any documented clinical CV event. Association of obesity to diabetes seems to worsen DC's phenotype and function and increase vascular inflammation.


Subject(s)
Cardiovascular Diseases/blood , Dendritic Cells/immunology , Diabetes Mellitus, Type 2/blood , Insulin Resistance/physiology , Monocytes/immunology , Obesity/blood , Aged , Case-Control Studies , Dendritic Cells/cytology , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Monocytes/cytology , Phenotype
6.
J Cancer Res Clin Oncol ; 146(12): 3155-3163, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32776284

ABSTRACT

PURPOSE: Indoleamine 2,3-dioxygenase-1 (IDO1) and more recently, tryptophan 2,3-dioxygenase (TDO), are tryptophan-catabolizing enzymes with immunoregulatory properties in cancer. IDO1 is more expressed than TDO in many tumours including melanomas; however, IDO inhibitors did not give expected results in clinical trials, highlighting the need to consider TDO. We aimed to characterize both TDO expression and function in a melanoma cell line, named SK-Mel-28, with the purpose to compare it with a colon cancer cell line, HCT-8, and with a human endothelial cell line (HUVEC). METHODS: TDO expression was assessed as real time-PCR and western blot, for mRNA and protein expression, respectively. While cell proliferation was assessed as cell duplication, cell apoptosis and cell cycle were analysed by means of flow cytometry. RESULTS: SK-Mel-28 cells showed higher TDO levels compared to HCT-8 and to HUVEC cells. A selective TDO inhibitor, 680C91, significantly impaired cell proliferation in a concentration-dependent manner, by inducing cell arrest during the G2 phase for SK-Mel-28 and HUVEC cells, while an early apoptosis was increasing in HCT-8 cells. No toxic effects were observed. These data demonstrated that TDO is highly expressed in SK-Mel-28 cells and may be involved in the regulation of their proliferation. CONCLUSION: TDO may directly modulate cancer cell function rather than immune suppression and can be considered as a target for melanoma progression together with IDO1.


Subject(s)
Colonic Neoplasms/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Melanoma/genetics , Tryptophan Oxygenase/genetics , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Human Umbilical Vein Endothelial Cells , Humans , Indoles/pharmacology , Melanoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...