Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
2.
Chemosphere ; 355: 141813, 2024 May.
Article in English | MEDLINE | ID: mdl-38575082

ABSTRACT

The environmental presence of nano- and micro-plastic particles (NMPs) is suspected to have a negative impact on human health. Environmental NMPs are difficult to sample and use in life science research, while commercially available plastic particles are too morphologically uniform. Additionally, this NMPs exposure exhibited biological effects, including cell internalization, oxidative stress, inflammation, cellular adaptation, and genotoxicity. Therefore, developing new methods for producing heterogenous NMPs as observed in the environment is important as reference materials for research. Thus, we aimed to generate and characterize NMPs suspensions using a modified ultrasonic protocol and to investigate their biological effects after exposure to different human cell lines. To this end, we produced polyethylene terephthalate (PET) NMPs suspensions and characterized the particles by dynamic light scattering and scanning electron microscopy. Ultrasound treatment induced polymer degradation into smaller and heterogeneous PET NMPs shape fragments with similar surface chemistry before and after treatment. A polydisperse suspension of PET NMPs with 781 nm in average size and negative surface charge was generated. Then, the PET NMPs were cultured with two human cell lines, A549 (lung) and HaCaT (skin), addressing inhalation and topical exposure routes. Both cell lines interacted with and have taken up PET NMPs as quantified via cellular granularity assay. A549 but not HaCaT cell metabolism, viability, and cell death were affected by PET NMPs. In HaCaT keratinocytes, large PET NMPs provoked genotoxic effects. In both cell lines, PET NMPs exposure affected oxidative stress, cytokine release, and cell morphology, independently of concentration, which we could relate mechanistically to Nrf2 and autophagy activation. Collectively, we present a new PET NMP generation model suitable for studying the environmental and biological consequences of exposure to this polymer.


Subject(s)
Microplastics , Polyethylene Terephthalates , Humans , Polyethylene Terephthalates/toxicity , Polymers , Inflammation/chemically induced , Oxidative Stress , Autophagy , Plastics , Polyethylene
3.
J Toxicol Environ Health A ; 86(22): 846-858, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37671816

ABSTRACT

It is known that UVB radiation induces several adverse skin alterations starting from simple photoaging to skin cancer. In addition, it was demonstrated that reactive oxygen species (ROS) were found to be related to cancer development and progression. The aim of study was to examine whether male hairless (SKH-1) mice (Mus musculus) that were subchronically exposed to UVB radiation presented with actinic keratosis (AK) and squamous cell carcinoma lesions, and that treatment with latex C-serum cream significantly prevented abnormal skin development. Data demonstrated for the first time the photoprotective activity of latex C-serum extracted from the rubber tree Hevea brasiliensis var. subconcolor Ducke. Latex C-serum prevented the progression of AK to squamous cell carcinoma in SKH-1 mice, indicating that mice topically treated with latex C-serum presented only AK lesions and treatment with the highest concentration (10%) significantly reduced epidermal thickness, suggesting diminished cell proliferation. Latex C-serum protected the skin of mice against oxidative stress damage, increasing catalase (CAT) activity, regenerating glutathione (GSH) levels, lowering thiobarbituric acid-reactive species (TBARS) production and regenerating the total antioxidant capacity (TAC) of the skin. Evidence that UV radiation in skin induced systemic alterations and erythrocytic analysis indicated that latex C-serum increased CAT activity and GSH levels. Taken together these data indicate that latex C-serum plays an important antioxidant and photoprotective role, preventing serious damage to the skin following exposure to UVB radiation.


Subject(s)
Carcinoma, Squamous Cell , Hevea , Animals , Mice , Antioxidants , Ultraviolet Rays/adverse effects , Latex , Glutathione
4.
Adv Sci (Weinh) ; 10(28): e2303183, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541287

ABSTRACT

Strategies to improve activity and selectivity are major goals in oncological drug development. Medical gas plasma therapy has been subject to intense research in dermatooncology recently. Based on partial gas ionization, this approach is exceptional in generating a variety of reactive oxygen species simultaneously that can be applied locally at the tumor side. It is hypothesized that combined gas plasma treatment can potentiate drug responses in the treatment of melanoma. Using a plasma jet approved as medical device in Europe, a systematic screening of 46 mitochondria-targeted drugs identifies five agents synergizing in vitro and in vivo. Increased intratumoral leucocyte infiltration points to immunomodulatory aspects of the treatment, motivating to investigate responses to immune checkpoint blockade in combination with plasma. Tumor growth is monitored based on bioluminescent imaging, and single-cell suspensions are retrieved from each tumor to characterize tumor-infiltrating leucocytes using multicolor flow cytometry. Gene expression profiling is done using a validated NanoString panel targeting 770 genes specifically designed for immuno-oncological research. Cell type abundancies are characterized from bulk RNA samples using the CIBERSORT computational framework. Collectively, the results indicate that local application of medical gas plasma technology synergizes with mitochondria-targeted drugs and anti-PD1 checkpoint therapy in treating melanoma.

6.
Clin. transl. oncol. (Print) ; 24(12): 2366-2378, dec. 2022.
Article in English | IBECS | ID: ibc-216083

ABSTRACT

Purpose Papillary thyroid carcinoma (PTC) is the most frequent subtype of thyroid cancer; Hashimoto's thyroiditis (HT), autoimmune disease, commonly affects the thyroid gland; there is possibly a correlation between both, but the exact mechanisms that involve this relationship are still under debate. Since oxidative stress (OS) and the inflammatory environment participate in the development of several types of cancer, the objective of the present study was to establish the microenvironment and systemic participation of OS and inflammatory markers in patients with PTC and HT. Methods Blood and tissue samples were collected from 115 patients: BENIGN (n = 63); PTC (n = 27); HT (n = 15) and PTC + HT (n = 10), and sixty-three were samples from healthy individuals (control group). Results Superoxide dismutase, Catalase, reduced Glutathione, markers of lipid peroxidation and inflammation were evaluated in blood. Immunohistochemistry was performed on 3-nitrotyrosine, 4-hydroxynonenal, Ki-67 and VEGF. The results indicate that antioxidant enzymes were more active in groups with thyroid disorders compared to control, while the concentration of Reduced glutathione was reduced in BENIGN and PTC groups. When PTC and PTC + HT groups were analyzed, no significant differences were found in relation to the antioxidant defense and inflammatory markers. The ability to contain the induced lipid peroxidation was lower and a high level of malondialdehyde was observed in the PTC group. All immunohistochemical markers had higher scores in the PTC group compared to PTC + HT. Conclusion There was a more pronounced presence of OS and a greater activity of cell proliferation and angiogenesis markers in PTC than in PTC + HT group (AU)


Subject(s)
Humans , Carcinoma, Papillary/pathology , Hashimoto Disease/complications , Thyroid Cancer, Papillary/pathology , Antioxidants , Catalase , Glutathione , Ki-67 Antigen , Malondialdehyde , Oxidative Stress , Superoxide Dismutase , Tumor Microenvironment , Vascular Endothelial Growth Factor A/metabolism
7.
Life Sci ; 310: 121064, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36220368

ABSTRACT

AIMS: This work investigated the effects of creatine supplementation on different pathways related to the pathogenesis of non-alcoholic fatty liver disease and alcoholic liver disease. MAIN METHODS: To induce alcoholic liver disease, male Swiss mice were divided into three groups: control, ethanol and ethanol supplemented with creatine. To induce non-alcoholic fatty liver disease, mice were divided into three groups: control, high-fat diet and high-fat diet supplemented with creatine. Each group consisted of eight animals. In both cases, creatine monohydrate was added to the diets (1 %; weight/vol). KEY FINDINGS: Creatine supplementation prevented high-fat diet-induced non-alcoholic fatty liver disease progression, demonstrated by attenuated liver fat accumulation and liver damage. On the other hand, when combined with ethanol, creatine supplementation up-regulated key genes related to ethanol metabolism, oxidative stress, inflammation and lipid synthesis, and exacerbated ethanol-induced liver steatosis and damage, demonstrated by increased liver fat accumulation and histopathological score, as well as elevated oxidative damage markers and inflammatory mediators. SIGNIFICANCE: Our results clearly demonstrated creatine supplementation exerts different outcomes in relation to non-alcoholic fatty liver disease and alcoholic liver disease, namely it protects against high-fat diet-induced non-alcoholic fatty liver disease but exacerbates ethanol-induced alcoholic liver disease. The exacerbating effects of the creatine and ethanol combination appear to be related to oxidative stress and inflammation-mediated up-regulation of ethanol metabolism.


Subject(s)
Fatty Liver, Alcoholic , Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/complications , Creatine/pharmacology , Fatty Liver, Alcoholic/etiology , Fatty Liver, Alcoholic/prevention & control , Liver/metabolism , Diet, High-Fat/adverse effects , Dietary Supplements , Liver Diseases, Alcoholic/pathology , Ethanol/toxicity , Ethanol/metabolism , Oxidative Stress , Inflammation/pathology
8.
Biol Open ; 11(10)2022 10 15.
Article in English | MEDLINE | ID: mdl-36214254

ABSTRACT

While the typical role of receptor tyrosine kinases is to receive and transmit signals at the cell surface, in some cellular contexts (particularly transformed cells) they may also act as nuclear proteins. Aberrant nuclear localization of receptor tyrosine kinases associated with transformation often enhances the transformed phenotype (i.e. nuclear ErbBs promote tumor progression in breast cancer). Rhabdomyosarcoma (RMS), the most common soft tissue tumor in children, develops to resemble immature skeletal muscle and has been proposed to derive from muscle stem/progenitor cells (satellite cells). It is an aggressive cancer with a 5-year survival rate of 33% if it has metastasized. Eph receptor tyrosine kinases have been implicated in the development and progression of many other tumor types, but there are only two published studies of Ephs localizing to the nucleus of any cell type and to date no nuclear RTKs have been identified in RMS. In a screen for protein expression of Ephs in canine RMS primary tumors as well as mouse and human RMS cell lines, we noted strong expression of EphA1 in the nucleus of interphase cells in tumors from all three species. This localization pattern changes in dividing cells, with EphA1 localizing to the nucleus or the cytoplasm depending on the phase of the cell cycle. These data represent the first case of a nuclear RTK in RMS, and the first time that EphA1 has been detected in the nucleus of any cell type.


Subject(s)
Receptor, EphA1 , Rhabdomyosarcoma , Animals , Child , Dogs , Humans , Mice , Muscle, Skeletal , Nuclear Proteins , Receptor, EphA1/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Tyrosine
9.
Antioxidants (Basel) ; 11(8)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35892641

ABSTRACT

Reactive species generated by medical gas plasma technology can be enriched in liquids for use in oncology targeting disseminated malignancies, such as metastatic colorectal cancer. Notwithstanding, reactive species quantities depend on the treatment mode, and we recently showed gas plasma exposure in conductive modes to be superior for cancer tissue treatment. However, evidence is lacking that such a conductive mode also equips gas plasma-treated liquids to confer augmented intraperitoneal anticancer activity. To this end, employing atmospheric pressure argon plasma jet kINPen-treated Ringer's lactate (oxRilac) in a CT26-model of colorectal peritoneal carcinomatosis, we tested repeated intraabdominal injection of such remotely or conductively oxidized liquid for antitumor control and immunomodulation. Enhanced reactive species formation in conductive mode correlated with reduced tumor burden in vivo, emphasizing the advantage of conduction over the free mode for plasma-conditioned liquids. Interestingly, the infiltration of lymphocytes into the tumors was equally enhanced by both treatments. However, significantly lower levels of interleukin (IL)4 and IL13 and increased levels of IL2 argue for a shift in intratumoral T-helper cell subpopulations correlating with disease control. In conclusion, our data argue for using conductively over remotely prepared plasma-treated liquids for anticancer treatment.

10.
Clin Transl Oncol ; 24(12): 2366-2378, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35902455

ABSTRACT

PURPOSE: Papillary thyroid carcinoma (PTC) is the most frequent subtype of thyroid cancer; Hashimoto's thyroiditis (HT), autoimmune disease, commonly affects the thyroid gland; there is possibly a correlation between both, but the exact mechanisms that involve this relationship are still under debate. Since oxidative stress (OS) and the inflammatory environment participate in the development of several types of cancer, the objective of the present study was to establish the microenvironment and systemic participation of OS and inflammatory markers in patients with PTC and HT. METHODS: Blood and tissue samples were collected from 115 patients: BENIGN (n = 63); PTC (n = 27); HT (n = 15) and PTC + HT (n = 10), and sixty-three were samples from healthy individuals (control group). RESULTS: Superoxide dismutase, Catalase, reduced Glutathione, markers of lipid peroxidation and inflammation were evaluated in blood. Immunohistochemistry was performed on 3-nitrotyrosine, 4-hydroxynonenal, Ki-67 and VEGF. The results indicate that antioxidant enzymes were more active in groups with thyroid disorders compared to control, while the concentration of Reduced glutathione was reduced in BENIGN and PTC groups. When PTC and PTC + HT groups were analyzed, no significant differences were found in relation to the antioxidant defense and inflammatory markers. The ability to contain the induced lipid peroxidation was lower and a high level of malondialdehyde was observed in the PTC group. All immunohistochemical markers had higher scores in the PTC group compared to PTC + HT. CONCLUSION: There was a more pronounced presence of OS and a greater activity of cell proliferation and angiogenesis markers in PTC than in PTC + HT group.


Subject(s)
Carcinoma, Papillary , Hashimoto Disease , Thyroid Neoplasms , Antioxidants , Carcinoma, Papillary/pathology , Catalase , Glutathione , Hashimoto Disease/complications , Humans , Ki-67 Antigen , Malondialdehyde , Oxidative Stress , Superoxide Dismutase , Thyroid Cancer, Papillary , Thyroid Neoplasms/pathology , Tumor Microenvironment , Vascular Endothelial Growth Factor A/metabolism
11.
Part Fibre Toxicol ; 19(1): 28, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449034

ABSTRACT

The ubiquitous nature of micro- (MP) and nanoplastics (NP) is a growing environmental concern. However, their potential impact on human health remains unknown. Research increasingly focused on using rodent models to understand the effects of exposure to individual plastic polymers. In vivo data showed critical exposure effects depending on particle size, polymer, shape, charge, concentration, and exposure routes. Those effects included local inflammation, oxidative stress, and metabolic disruption, leading to gastrointestinal toxicity, hepatotoxicity, reproduction disorders, and neurotoxic effects. This review distillates the current knowledge regarding rodent models exposed to MP and NP with different experimental designs assessing biodistribution, bioaccumulation, and biological responses. Rodents exposed to MP and NP showed particle accumulation in several tissues. Critical responses included local inflammation and oxidative stress, leading to microbiota dysbiosis, metabolic, hepatic, and reproductive disorders, and diseases exacerbation. Most studies used MP and NP commercially provided and doses higher than found in environmental exposure. Hence, standardized sampling techniques and improved characterization of environmental MP and NP are needed and may help in toxicity assessments of relevant particle mixtures, filling knowledge gaps in the literature.


Subject(s)
Microplastics , Plastics , Animals , Inflammation , Microplastics/toxicity , Plastics/toxicity , Rodentia , Tissue Distribution
12.
Bioorg Chem ; 120: 105576, 2022 03.
Article in English | MEDLINE | ID: mdl-34979447

ABSTRACT

OBJECTIVE: Caffeine has been studied as a potentiating agent in chemotherapy against some types of cancer, but there are few reports on its effects on melanoma. This study aimed to investigate caffeine's ability to enhance the effects of dacarbazine in vitro. MATERIALS AND METHODS: Murine melanoma B16F10 cells were treated 24 h with 1-40 µM caffeine. We evaluated cytotoxicity, DNA damage, apoptosis, and oxidative lesion induced by dacarbazine associated with caffeine. The metabolization of these drugs, as well as immunocytochemical labeling, were also evaluated. CONCLUSIONS: The pre-treatment with caffeine showed to be more effective. Caffeine potentiated dacarbazine-induced cytotoxic effects by increasing dacarbazine biotransformation, apoptosis, DNA damage, and malondialdehyde levels; also, caffeine reduced Ki67 and ERK1/2 nuclear labeling and increased p53 labeling in B16F10 cells. In our experiment, caffeine promoted modifications associated with dacarbazine metabolism by viable cells potentiating this antineoplastic drug. These promising results should be further evaluated in experimental models in vivo.


Subject(s)
Antineoplastic Agents , Melanoma , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Caffeine/pharmacology , Cell Line, Tumor , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Melanoma/drug therapy , Mice
13.
Cell Biol Int ; 46(1): 73-82, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34506671

ABSTRACT

Oxidative stress role on metformin process of dacarbazine (DTIC) inducing resistance of B16F10 melanoma murine cells are investigated. To induce resistance to DTIC, murine melanoma cells were exposed to increasing concentrations of dacarabazine (DTIC-res group). Metformin was administered before and during the induction of resistance to DTIC (MET-DTIC). The oxidative stress parameters of the DTIC-res group showed increased levels of malondialdehyde (MDA), thiol, and reduced nuclear p53, 8-hydroxy-2'-deoxyguanosine (8-OH-DG), nuclear factor kappa B (NF-ĸB), and Nrf2. In presence of metformin in the resistant induction process to DTIC, (MET-DTIC) cells had increased antioxidant thiols, MDA, nuclear p53, 8-OH-DG, Nrf2, and reducing NF-ĸB, weakening the DTIC-resistant phenotype. The exclusive administration of metformin (MET group) also induced the cellular resistance to DTIC. The MET group presented high levels of total thiols, MDA, and reduced percentage of nuclear p53. It also presented reduced nuclear 8-OH-DG, NF-ĸB, and Nrf2 when compared with the control. Oxidative stress and the studied biomarkers seem to be part of the alterations evidenced in DTIC-resistant B16F10 cells. In addition, metformin administration is able to play a dual role according to the experimental protocol, preventing or inducing a DTIC-resistant phenotype. These findings should help future research with the aim of investigating DTIC resistance in melanoma.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Antioxidants/pharmacology , Dacarbazine/pharmacology , Drug Resistance, Neoplasm/drug effects , Melanoma, Experimental/drug therapy , Metformin/pharmacology , Skin Neoplasms/drug therapy , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Animals , Cell Line, Tumor , Malondialdehyde/metabolism , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism
14.
Free Radic Res ; 56(11-12): 740-748, 2022.
Article in English | MEDLINE | ID: mdl-36708322

ABSTRACT

Oxidative Stress (OS) is involved in the pathogenesis of COVID-19 and in the mechanisms by which SARS-CoV-2 causes injuries to tissues, leading to cytopathic hypoxia and ultimately multiple organ failure. The measurement of blood glutathione (GSH), H2O2, and catalase activity may help clarify the pathophysiology pathways of this disease. We developed and standardized a sensitive and specific chemiluminescence technique for H2O2 and GSH measurement in plasma and red blood cells of COVID-19 patients admitted to the intensive care unit (ICU). Contrary to what was expected, the plasma concentration of H2O2 was substantially reduced (10-fold) in COVID-19 patients compared to the healthy control group. From the cohort of patients discharged from the hospital and those who were deceased, the former showed a 3.6-fold and the later 16-fold H2O2 reduction compared to the healthy control. There was a 4.4 reduction of H2O2 concentration in the deceased group compared to the discharged group. Interestingly, there was no variation in GSH levels between groups, and reduced catalase activity was found in discharged and deceased patients compared to control. These data represent strong evidence that H2O2 is converted into highly reactive oxygen species (ROS), leading to the worst prognosis and death outcome in COVID-19 patients admitted to ICU. Considering the difference in the levels of H2O2 between the control group and the deceased patients, it is proposed the quantification of plasma H2O2 as a marker of disease progression and the induction of the synthesis of antioxidant enzymes as a strategy to reduce the production of oxidative stress during severe COVID-19.HighlightsH2O2 plasma levels is dramatically reduced in patients who deceased compared to those discharged and to the control group.Plasmatic quantification of H2O2 can be possibly used as a predictor of disease progression.Catalase activity is reduced in COVID-19.GSH levels remain unchanged in COVID-19 compared to the control group.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Hydrogen Peroxide , Catalase/metabolism , Oxidative Stress , Antioxidants/metabolism , Glutathione/metabolism
15.
Biomedicines ; 9(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34440136

ABSTRACT

Cold physical plasma, a partially ionized gas rich in reactive oxygen species (ROS), is receiving increasing interest as a novel anticancer agent via two modes. The first involves its application to cells and tissues directly, while the second uses physical plasma-derived ROS to oxidize liquids. Saline is a clinically accepted liquid, and here we explored the suitability of plasma-oxidized saline (POS) as anticancer agent technology in vitro and in vivo using the Ehrlich Ascites Carcinoma (EAC) model. EAC mainly grows as a suspension in the peritoneal cavity of mice, making this model ideally suited to test POS as a putative agent against peritoneal carcinomatosis frequently observed with colon, pancreas, and ovarium metastasis. Five POS injections led to a reduction of the tumor burden in vivo as well as in a decline of EAC cell growth and an arrest in metabolic activity ex vivo. The treatment was accompanied by a decreased antioxidant capacity of Ehrlich tumor cells and increased lipid oxidation in the ascites supernatants, while no other side effects were observed. Oxaliplatin and hydrogen peroxide were used as controls and mediated better and worse outcomes, respectively, with the former but not the latter inducing profound changes in the inflammatory milieu among 13 different cytokines investigated in ascites fluid. Modulation of inflammation in the POS group was modest but significant. These results promote POS as a promising candidate for targeting peritoneal carcinomatosis and malignant ascites and suggest EAC to be a suitable and convenient model for analyzing innovative POS approaches and combination therapies.

16.
Front Mol Biosci ; 8: 809364, 2021.
Article in English | MEDLINE | ID: mdl-35096972

ABSTRACT

Although intracellular signal transduction is generally represented as a linear process that transmits stimuli from the exterior of a cell to the interior via a transmembrane receptor, interactions with additional membrane-associated proteins are often critical to its success. These molecules play a pivotal role in mediating signaling via the formation of complexes in cis (within the same membrane) with primary effectors, particularly in the context of tumorigenesis. Such secondary effectors may act to promote successful signaling by mediating receptor-ligand binding, recruitment of molecular partners for the formation of multiprotein complexes, or differential signaling outcomes. One signaling family whose contact-mediated activity is frequently modulated by lateral interactions at the cell surface is Eph/ephrin (EphA and EphB receptor tyrosine kinases and their ligands ephrin-As and ephrin-Bs). Through heterotypic interactions in cis, these molecules can promote a diverse range of cellular activities, including some that are mutually exclusive (cell proliferation and cell differentiation, or adhesion and migration). Due to their broad expression in most tissues and their promiscuous binding within and across classes, the cellular response to Eph:ephrin interaction is highly variable between cell types and is dependent on the cellular context in which binding occurs. In this review, we will discuss interactions between molecules in cis at the cell membrane, with emphasis on their role in modulating Eph/ephrin signaling.

17.
Genet Mol Biol ; 44(1 Suppl 1): e20200452, 2021.
Article in English | MEDLINE | ID: mdl-35421211

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. The disease, which emerged in China's Wuhan province, had its first reported case on December 29, 2019, and spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and replication or interfere in the patients' overreaction and immunopathology. Moreover, nanotechnology could be an approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use or full authorization in one or more countries, and others are being developed and tested. This review assesses the different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches by the human and viral genetic variability.

18.
Nutr Cancer ; 73(8): 1378-1388, 2021.
Article in English | MEDLINE | ID: mdl-32691663

ABSTRACT

To investigate the effects of caffeine on the proliferation and death of human breast cancer cells MCF-7 and MDA-MB-231. Cells were exposed to 1, 2.5, 5 and 10 mM of caffeine during 24 h, and oxidative stress (OS), cell proliferation and death, metabolic activity and DNA lesions were evaluated in the collected samples. Caffeine was cytotoxic to the cell lines analyzed, reducing cell proliferation and viability by interfering with the cellular metabolism and with lysosomal function. Although the cells presented different behaviors to treatment, in both cell lines, the drug induced OS and predominantly apoptosis. MCF-7 cells responded to OS induction (lipid peroxidation) increasing their antioxidant defenses. However, the OS generated induced oxidative DNA lesions, a finding not observed in MDA-MB-231 cells. The association of different scavengers with caffeine did not result in the recovery of cell viability, which suggests that it is not possible to attribute the caffeine induction of OS to only one of the specific ROS analyzed (superoxide anion, singlet oxygen and peroxyl radical). These results are promising and suggest that caffeine may be a good target for studies to prove its usefulness as an adjuvant in breast cancer treatment.


Subject(s)
Breast Neoplasms , Caffeine , Apoptosis , Breast Neoplasms/drug therapy , Caffeine/pharmacology , Cell Line, Tumor , Cell Proliferation , Female , Humans , MCF-7 Cells , Oxidative Stress
19.
J Dev Orig Health Dis ; 12(4): 595-602, 2021 08.
Article in English | MEDLINE | ID: mdl-33109301

ABSTRACT

Alterations in the circadian cycle are known to cause physiological disorders in the hypothalamic-pituitary-adrenal and the hypothalamic-pituitary-gonadal axes in adult individuals. Therefore, the present study aimed to evaluate whether exposure of pregnant rats to constant light can alter the reproductive system development of male offspring. The dams were divided into two groups: a light-dark group (LD), in which pregnant rats were exposed to an LD photoperiod (12 h/12 h) and a light-light (LL) group, in which pregnant rats were exposed to a photoperiod of constant light during the gestation period. After birth, offspring from both groups remained in the normal LD photoperiod (12 h/12 h) until adulthood. One male of each litter was selected and, at adulthood (postnatal day (PND) 90), the trunk blood was collected to measure plasma testosterone levels, testes and epididymis for sperm count, oxidative stress and histopathological analyses, and the spermatozoa from the vas deferens to perform the morphological and motility analyses. Results showed that a photoperiod of constant light caused a decrease in testosterone levels, epididymal weight and sperm count in the epididymis, seminiferous tubule diameter, Sertoli cell number, and normal spermatozoa number. Histopathological damage was also observed in the testes, and stereological alterations, in the LL group. In conclusion, exposure to constant light during the gestational period impairs the reproductive system of male offspring in adulthood.


Subject(s)
Circadian Rhythm , Genitalia, Male/growth & development , Light/adverse effects , Prenatal Exposure Delayed Effects/pathology , Animals , Female , Genitalia, Male/pathology , Male , Oxidative Stress , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Rats, Wistar , Spermatogenesis , Testosterone/blood
20.
Pathol Res Pract ; 216(11): 153218, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33002848

ABSTRACT

Malignant melanoma is the most dangerous form of skin cancer. Despite new therapies for melanoma treatment, effective therapy is mainly limited by excessive metastasis. Currently, the factors determining metastasis development are not elucidated, but oxidative stress was suggested to be involved. To this end, we analyzed oxidative stress parameters during the metastatic development using the syngeneic B16F10 melanoma model. An increase in blood plasma lipid peroxidation occurred at the earliest stage of the disease, with a progressive decrease in oxidative damage and an increase in antioxidant defense. Vice versa, increased lipid peroxidation and 3-nitrotyrosine, and decreased antioxidant parameters were observed in the metastatic nodules throughout the disease. This was concomitant with a progressive increase in vascular endothelial growth factor and proliferating cell nuclear antigen. We conclude that the oxidative stress in the bloodstream decreases during the metastatic process and that nitrosative stress increases during the proliferation and growth of metastatic nodules in the tumor microenvironment. These results will help to better understand the role of oxidative stress during melanoma metastasis.


Subject(s)
Lung Neoplasms/secondary , Melanoma/secondary , Neoplasm Metastasis/pathology , Oxidative Stress/physiology , Skin Neoplasms/pathology , Animals , Cell Line, Tumor , Disease Progression , Lung Neoplasms/metabolism , Melanoma/metabolism , Mice , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Skin Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...