Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 19(5): e0300776, 2024.
Article in English | MEDLINE | ID: mdl-38809815

ABSTRACT

PURPOSE: Studies indicate that the rated perceived exertion (RPE) during physical exercise can be lower in field environments than indoors. The environmental conditions of those studies are explored. Furthermore, we study if the same phenomenon is valid when cycling indoors versus in cycle commuting environments with high levels of stimuli from both traffic and suburban-urban elements. METHODS: Twenty commuter cyclists underwent measurements of heart rate (HR) and oxygen uptake ([Formula: see text]O2) and RPE assessments for breathing and legs, respectively, while cycling in both laboratory and field conditions. A validated mobile metabolic system was used in the field to measure [Formula: see text]O2. Three submaximal cycle ergometer workloads in the laboratory were used to establish linear regression equations between RPE and % of HR reserve (%HRR) and %[Formula: see text]O2max, separately. Based on these equations, RPE from the laboratory was predicted and compared with RPE levels at the participants' individual cycle commutes at equal intensities. The same approach was used to predict field intensities and for comparisons with corresponding measured intensities at equal RPE levels. RESULTS: The predicted RPE levels based on the laboratory cycling were significantly higher than the RPE levels in cycle commuting at equal intensities (67% of HRR; 65% of [Formula: see text]O2max). For breathing, the mean RPE levels were; 14.0-14.2 in the laboratory and 12.6 in the field. The corresponding levels for legs were; 14.0-14.2 and 11.5. The range of predicted field intensities in terms of %HRR and %[Formula: see text]O2max was 46-56%, which corresponded to median differences of 19-30% compared to the measured intensities in field at equal RPE. CONCLUSION: The cycle commuters perceived a lower exertion during their cycle commutes compared to ergometer cycling in a laboratory at equal exercise intensities. This may be due to a higher degree of external stimuli in field, although influences from other possible causes cannot be ruled out.


Subject(s)
Bicycling , Heart Rate , Oxygen Consumption , Physical Exertion , Humans , Physical Exertion/physiology , Adult , Male , Oxygen Consumption/physiology , Heart Rate/physiology , Bicycling/physiology , Perception/physiology , Exercise/physiology , Female , Exercise Test , Young Adult
2.
Accid Anal Prev ; 50: 122-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23200448

ABSTRACT

Text messaging while driving can be distracting and significantly increases the risk of being involved in a collision. Compared to freeway driving, driving in a tunnel environment introduces factors that may interact with driver attentional resources to exacerbate the effects of distraction on driving safety. With planning and design of the 18km Stockholm Bypass tunnel ongoing, and because of the potentially devastating consequences of crashes in long tunnels, it is critical to assess the effects of driver distraction in a tunnel environment. Twenty-four participants (25-50 years) drove in simulated highway and tunnel road environments while reading and writing text messages using their own mobile phones. As expected, compared to driving alone, text messaging was associated with decrements in driving performance and visual scanning behavior, and increases in subjective workload. Speeds were slower compared to baseline (no text-messaging) driving when participants performed the text-messaging tasks in the tunnel environment compared to the freeway, suggesting that drivers may have attempted to compensate more for the increased text-messaging-related workload when they were in the tunnel. On the other hand, increases in lane deviation associated with the most complex text-messaging task were more pronounced in the tunnel compared to on the freeway. Collectively, results imply that driver distraction in tunnels is associated with generally similar driving decrements as freeway driving; however, the potential consequences of these decrements in tunnels remain significantly more serious. Future research should attempt to elucidate the nature of any differential compensatory behavior in tunnel, compared to freeway, driving. In the meantime, drivers should be advised to refrain from text messaging, especially when driving in tunnels.


Subject(s)
Attention , Automobile Driving , Cell Phone , Environment , Accidents, Traffic , Adult , Female , Humans , Male , Middle Aged , Psychomotor Performance , Risk-Taking , Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...