Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Adv ; 8(14): eabm8501, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35394828

ABSTRACT

In contrast to prokaryotes wherein GUG and UUG are permissive start codons, initiation frequencies from non-AUG codons are generally low in eukaryotes, with CUG being considered as strongest. Here, we report that combined 5-cytosine methylation (5mC) and pseudouridylation (Ψ) of near-cognate non-AUG start codons convert GUG and UUG initiation strongly favored over CUG initiation in eukaryotic translation under a certain context. This prokaryotic-like preference is attributed to enhanced NUG initiation by Ψ in the second base and reduced CUG initiation by 5mC in the first base. Molecular dynamics simulation analysis of tRNAiMet anticodon base pairing to the modified codons demonstrates that Ψ universally raises the affinity of codon:anticodon pairing within the ribosomal preinitiation complex through partially mitigating discrimination against non-AUG codons imposed by eukaryotic initiation factor 1. We propose that translational control by chemical modifications of start codon bases can offer a new layer of proteome diversity regulation and therapeutic mRNA technology.

3.
Cell Rep ; 36(2): 109376, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260931

ABSTRACT

eIF5-mimic protein (5MP) is a translational regulatory protein that binds the small ribosomal subunit and modulates its activity. 5MP is proposed to reprogram non-AUG translation rates for oncogenes in cancer, but its role in controlling non-AUG initiated synthesis of deleterious repeat-peptide products, such as FMRpolyG observed in fragile-X-associated tremor ataxia syndrome (FXTAS), is unknown. Here, we show that 5MP can suppress both general and repeat-associated non-AUG (RAN) translation by a common mechanism in a manner dependent on its interaction with eIF3. Essentially, 5MP displaces eIF5 through the eIF3c subunit within the preinitiation complex (PIC), thereby increasing the accuracy of initiation. In Drosophila, 5MP/Kra represses neuronal toxicity and enhances the lifespan in an FXTAS disease model. These results implicate 5MP in protecting cells from unwanted byproducts of non-AUG translation in neurodegeneration.


Subject(s)
Codon, Initiator/genetics , DNA-Binding Proteins/metabolism , Eukaryotic Initiation Factor-3/metabolism , Protein Biosynthesis/genetics , Trinucleotide Repeat Expansion/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antigens, Differentiation/metabolism , DNA-Binding Proteins/chemistry , Drosophila/metabolism , Drosophila Proteins/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-3/chemistry , HEK293 Cells , Humans , Male , Models, Biological , Models, Molecular , Mutation/genetics , Peptide Chain Initiation, Translational , Protein Binding , Protein Domains , Receptors, Immunologic/metabolism
4.
Nucleic Acids Res ; 48(16): 8977-8992, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32710633

ABSTRACT

The protein kinase Gcn2 is a central transducer of nutritional stress signaling important for stress adaptation by normal cells and the survival of cancer cells. In response to nutrient deprivation, Gcn2 phosphorylates eIF2α, thereby repressing general translation while enhancing translation of specific mRNAs with upstream ORFs (uORFs) situated in their 5'-leader regions. Here we performed genome-wide measurements of mRNA translation during histidine starvation in fission yeast Schizosaccharomyces pombe. Polysome analyses were combined with microarray measurements to identify gene transcripts whose translation was up-regulated in response to the stress in a Gcn2-dependent manner. We determined that translation is reprogrammed to enhance RNA metabolism and chromatin regulation and repress ribosome synthesis. Interestingly, translation of intron-containing mRNAs was up-regulated. The products of the regulated genes include additional eIF2α kinase Hri2 amplifying the stress signaling and Gcn5 histone acetyl transferase and transcription factors, together altering genome-wide transcription. Unique dipeptide-coding uORFs and nucleotide motifs, such as '5'-UGA(C/G)GG-3', are found in 5' leader regions of regulated genes and shown to be responsible for translational control.


Subject(s)
Nucleotide Motifs , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Acetyltransferases/metabolism , Gene Expression Regulation, Fungal , Histidine/metabolism , Open Reading Frames , Protein Processing, Post-Translational , Schizosaccharomyces/genetics , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...