Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 14(4)2023 04 13.
Article in English | MEDLINE | ID: mdl-37107662

ABSTRACT

The great diversity of color patterns observed among amphibians is largely explained by the differentiation of relatively few pigment cell types during development. Mexican axolotls present a variety of color phenotypes that span the continuum from leucistic to highly melanistic. The melanoid axolotl is a Mendelian variant characterized by large numbers of melanophores, proportionally fewer xanthophores, and no iridophores. Early studies of melanoid were influential in developing the single-origin hypothesis of pigment cell development, wherein it has been proposed that all three pigment cell types derive from a common progenitor cell, with pigment metabolites playing potential roles in directing the development of organelles that define different pigment cell types. Specifically, these studies identified xanthine dehydrogenase (XDH) activity as a mechanism for the permissive differentiation of melanophores at the expense of xanthophores and iridophores. We used bulked segregant RNA-Seq to screen the axolotl genome for melanoid candidate genes and identify the associated locus. Dissimilar frequencies of single-nucleotide polymorphisms were identified between pooled RNA samples of wild-type and melanoid siblings for a region on chromosome 14q. This region contains gephyrin (Gphn), an enzyme that catalyzes the synthesis of the molybdenum cofactor that is required for XDH activity, and leukocyte tyrosine kinase (Ltk), a cell surface signaling receptor that is required for iridophore differentiation in zebrafish. Wild-type Ltk crispants present similar pigment phenotypes to melanoid, strongly implicating Ltk as the melanoid locus. In concert with recent findings in zebrafish, our results support the idea of direct fate specification of pigment cells and, more generally, the single-origin hypothesis of pigment cell development.


Subject(s)
Ambystoma mexicanum , Zebrafish , Animals , Ambystoma mexicanum/genetics , Ambystoma mexicanum/metabolism , Zebrafish/genetics , Melanophores/metabolism , Cell Differentiation/genetics , Leukocytes
2.
Sci Rep ; 12(1): 16245, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171243

ABSTRACT

The pig is an ideal model system for studying human development and disease due to its similarities to human anatomy, physiology, size, and genome. Further, advances in CRISPR gene editing have made genetically engineered pigs viable models for the study of human pathologies and congenital anomalies. However, a detailed atlas illustrating pig development is necessary for identifying and modeling developmental defects. Here we describe normal development of the pig abdominal system and show examples of congenital defects that can arise in CRISPR gene edited SAP130 mutant pigs. Normal pigs at different gestational ages from day 20 (D20) to term were examined and the configuration of the abdominal organs was studied using 3D histological reconstructions with episcopic confocal microscopy, magnetic resonance imaging (MRI) and necropsy. This revealed prominent mesonephros, a transient embryonic organ present only during embryogenesis, at D20, while the developing metanephros that will form the permanent kidney are noted at D26. By D64 the mesonephroi are absent and only the metanephroi remain. The formation of the liver and pancreas was observed by D20 and complete by D30 and D35 respectively. The spleen and adrenal glands are first identified at D26 and completed by D42. The developing bowel and the gonads are identified at D20. The bowel appears completely rotated by D42, and testes in the male were descended at D64. This atlas and the methods used are excellent tools for identifying developmental pathologies of the abdominal organs in the pig at different stages of development.


Subject(s)
Gene Editing , Kidney , Abdomen/diagnostic imaging , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing/methods , Genetic Engineering , Humans , Male , Swine
3.
Sci Rep ; 12(1): 5009, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322150

ABSTRACT

Senecavirus A (SVA) is a cause of vesicular disease in pigs, and infection rates are rising within the swine industry. Recently, anthrax toxin receptor 1 (ANTXR1) was revealed as the receptor for SVA in human cells. Herein, the role of ANTXR1 as a receptor for SVA in pigs was investigated by CRISPR/Cas9 genome editing. Strikingly, ANTXR1 knockout (KO) pigs exhibited features consistent with the rare disease, GAPO syndrome, in humans. Fibroblasts from wild type (WT) pigs supported replication of SVA; whereas, fibroblasts from KO pigs were resistant to infection. During an SVA challenge, clinical symptoms, including vesicular lesions, and circulating viremia were present in infected WT pigs but were absent in KO pigs. Additional ANTXR1-edited piglets were generated that were homozygous for an in-frame (IF) mutation. While IF pigs presented a GAPO phenotype similar to the KO pigs, fibroblasts showed mild infection, and circulating SVA nucleic acid was decreased in IF compared to WT pigs. Thus, this new ANTXR1 mutation resulted in decreased permissiveness of SVA in pigs. Overall, genetic disruption of ANTXR1 in pigs provides a unique model for GAPO syndrome and prevents circulating SVA infection and clinical symptoms, confirming that ANTXR1 acts as a receptor for the virus.


Subject(s)
Picornaviridae Infections , Picornaviridae , Swine Diseases , Alopecia , Animals , Anodontia , Growth Disorders , Optic Atrophies, Hereditary , Phenotype , Picornaviridae/genetics , Rare Diseases , Receptors, Peptide , Swine
4.
Biol Reprod ; 105(6): 1577-1590, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34608481

ABSTRACT

Establishment and maintenance of pregnancy in the pig is a complex process that relies on conceptus regulation of the maternal proinflammatory response to endometrial attachment. Following elongation, pig conceptuses secrete interferon gamma (IFNG) during attachment to the endometrial luminal epithelium. The objective here was to determine if conceptus production of IFNG is important for early development and establishment of pregnancy. CRISPR/Cas9 gene editing and somatic cell nuclear transfer technologies were used to create an IFNG loss-of-function study in pigs. Wild-type (IFNG+/+) and null (IFNG-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer. IFNG expression was not detected in IFNG-/- conceptuses on either day 15 or day 17 of pregnancy. Ablation of conceptus IFNG production resulted in the reduction of stromal CD3+ and mast cells, which localized to the site of conceptus attachment on day 15. The uteri of recipients with IFNG-/- conceptuses were inflamed, hyperemic and there was an abundance of erythrocytes in the uterine lumen associated with the degenerating conceptuses. The endometrial stromal extracellular matrix was altered in the IFNG-/- embryo pregnancies and there was an increased endometrial mRNA levels for collagen XVII (COL17A1), matrilin 1 (MATN1), secreted phosphoprotein 1 (SPP1), and cysteine-rich secretory protein 3 (CRISP3), which are involved with repair and remodeling of the extracellular matrix. These results indicate conceptus IFNG production is essential in modulating the endometrial proinflammatory response for conceptus attachment and survival in pigs.


Subject(s)
Embryo, Mammalian/metabolism , Interferon-gamma/metabolism , Pregnancy, Animal/metabolism , Sus scrofa/embryology , Animals , Embryonic Development , Female , Pregnancy
5.
Biol Reprod ; 105(5): 1104-1113, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34453429

ABSTRACT

Elongation of pig conceptuses is a dynamic process, requiring adequate nutrient provisions. Glutamine is used as an energy substrate and is involved in the activation of mechanistic target of rapamycin complex 1 (mTORC1) during porcine preimplantation development. However, the roles of glutamine have not been extensively studied past the blastocyst stage. Therefore, the objective of the current study was to determine if glutaminase (GLS), which is the rate-limiting enzyme in glutamine metabolism, was necessary for conceptus elongation to proceed and was involved in mTORC1 activation. The CRISPR/Cas9 system was used to induce loss-of-function mutations in the GLS gene of porcine fetal fibroblasts. Wild type (GLS+/+) and knockout (GLS-/-) fibroblasts were used as donor cells for somatic cell nuclear transfer, and GLS+/+ and GLS-/- blastocyst-stage embryos were transferred into surrogates. On day 14 of gestation, GLS+/+ conceptuses primarily demonstrated filamentous morphologies, and GLS-/- conceptuses exhibited spherical, ovoid, tubular, and filamentous morphologies. Thus, GLS-/- embryos were able to elongate despite the absence of GLS protein and minimal enzyme activity. Furthermore, spherical GLS-/- conceptuses had increased abundance of transcripts related to glutamine and glutamate metabolism and transport compared to filamentous conceptuses of either genotype. Differences in phosphorylation of mTORC1 components and targets were not detected regarding conceptus genotype or morphology, but abundance of two transcriptional targets of mTORC1, cyclin D1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha was increased in spherical conceptuses. Therefore, porcine GLS is not essential for conceptus elongation and is not required for mTORC1 activation at this developmental timepoint.


Subject(s)
Blastocyst/metabolism , Embryo, Mammalian/embryology , Embryonic Development/genetics , Glutaminase/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Sus scrofa/embryology , Animals , Embryo Transfer , Embryo, Mammalian/enzymology , Female , Glutaminase/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism
6.
J Am Heart Assoc ; 10(14): e021631, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34219463

ABSTRACT

Background Modeling cardiovascular diseases in mice has provided invaluable insights into the cause of congenital heart disease. However, the small size of the mouse heart has precluded translational studies. Given current high-efficiency gene editing, congenital heart disease modeling in other species is possible. The pig is advantageous given its cardiac anatomy, physiology, and size are similar to human infants. We profiled pig cardiovascular development and generated genetically edited pigs with congenital heart defects. Methods and Results Pig conceptuses and fetuses were collected spanning 7 stages (day 20 to birth at day 115), with at least 3 embryos analyzed per stage. A combination of magnetic resonance imaging and 3-dimensional histological reconstructions with episcopic confocal microscopy were conducted. Gross dissections were performed in late-stage or term fetuses by using sequential segmental analysis of the atrial, ventricular, and arterial segments. At day 20, the heart has looped, forming a common atria and ventricle and an undivided outflow tract. Cardiac morphogenesis progressed rapidly, with atrial and outflow septation evident by day 26 and ventricular septation completed by day 30. The outflow and atrioventricular cushions seen at day 20 undergo remodeling to form mature valves, a process continuing beyond day 42. Genetically edited pigs generated with mutation in chromatin modifier SAP130 exhibited tricuspid dysplasia, with tricuspid atresia associated with early embryonic lethality. Conclusions The major events in pig cardiac morphogenesis are largely complete by day 30. The developmental profile is similar to human and mouse, indicating gene edited pigs may provide new opportunities for preclinical studies focused on outcome improvements for congenital heart disease.


Subject(s)
Heart Defects, Congenital/embryology , Heart/embryology , Organogenesis/physiology , Animals , Disease Models, Animal , Magnetic Resonance Imaging, Cine/methods , Microscopy, Confocal , Swine
7.
Front Cell Dev Biol ; 9: 767377, 2021.
Article in English | MEDLINE | ID: mdl-35036404

ABSTRACT

New patterns of gene expression are enacted and regulated during tissue regeneration. Histone deacetylases (HDACs) regulate gene expression by removing acetylated lysine residues from histones and proteins that function directly or indirectly in transcriptional regulation. Previously we showed that romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Here, we report on the concentration-dependent effect of romidepsin on transcription and regeneration outcome, introducing an experimental and conceptual framework for investigating small molecule mechanisms of action. A range of romidepsin concentrations (0-10 µM) were administered from 0 to 6 or 0 to 12 h post amputation (HPA) and distal tail tip tissue was collected for gene expression analysis. Above a threshold concentration, romidepsin potently inhibited regeneration. Sigmoidal and biphasic transcription response curve modeling identified genes with inflection points aligning to the threshold concentration defining regenerative failure verses success. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Genes that associate with oxidative stress, negative regulation of cell signaling, negative regulation of cell cycle progression, and cellular differentiation were increased, while genes that are typically up-regulated during appendage regeneration were decreased, including genes expressed by fibroblast-like progenitor cells. Using single-nuclei RNA-Seq at 6 HPA, we found that key genes were altered by romidepin in the same direction across multiple cell types. Our results implicate HDAC activity as a transcriptional mechanism that operates across cell types to regulate the alternative expression of genes that associate with regenerative success versus failure outcomes.

8.
Mol Reprod Dev ; 87(7): 763-772, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32558023

ABSTRACT

To improve efficiency of somatic cell nuclear transfer (SCNT), it is necessary to modify differentiated donor cells to become more amendable for reprogramming by the oocyte cytoplasm. A key feature that distinguishes somatic/differentiated cells from embryonic/undifferentiated cells is cellular metabolism, with somatic cells using oxidative phosphorylation (OXPHOS) while embryonic cells utilize glycolysis. Inducing metabolic reprogramming in donor cells could improve SCNT efficiency by priming cells to become more embryonic in nature before SCNT hypoxia inducible factor 1-α (HIF1-α), a transcription factor that allows for cell survival in low oxygen, promotes a metabolic switch from OXPHOS to glycolysis. We hypothesized that chemically stabilizing HIF1-α in donor cells by use of the hypoxia mimetic, cobalt chloride (CoCl2 ), would promote this metabolic switch in donor cells and subsequently improve the development of SCNT embryos. Donor cell treatment with 100 µM CoCl2 for 24 hr preceding SCNT upregulated messenfer RNA abundance of glycolytic enzymes, improved SCNT development to the blastocyst stage and quality, and affected gene expression in the blastocysts. After transferring blastocysts created from CoCl2 -treated donor cells to surrogates, healthy cloned piglets were produced. Therefore, shifting metabolism toward glycolysis in donor cells by CoCl2 treatment is a simple, economical way of improving the in vitro efficiency of SCNT and is capable of producing live animals.

9.
Mol Reprod Dev ; 87(7): 773-782, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32495478

ABSTRACT

Hypotaurine (HT) is a routine component of porcine embryo culture medium, functioning as an antioxidant, but its requirement may be diminished as most embryo culture systems now use 5% O2 instead of atmospheric (20%) O2 . Our objective was to determine the effects of removing HT from the culture medium on porcine preimplantation embryo development. Embryos cultured in 20% O2 without HT had decreased blastocyst development compared to culture with HT or in 5% O2 with or without HT. Notably, differences in blastocyst development or total cell number were not detected between embryos cultured in 5% O2 with or without HT. After culture in 5% O2 without HT and embryo transfer, healthy fetuses were retrieved from two pregnancies on Day 42, confirming in vivo developmental competence. Transcript abundance of proapoptotic markers was decreased in embryos cultured without HT regardless of oxygen tension; however, assays for apoptosis did not demonstrate differences between groups. Additionally, no differences were observed in the development or apoptosis of somatic cell nuclear transfer-derived embryos cultured in 5% O2 with or without HT. With decreased utility in 5% O2 , removing HT from porcine embryo culture medium would also have economic advantages because it is undoubtedly the most expensive component.

10.
Biol Reprod ; 102(2): 475-488, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31616930

ABSTRACT

Pig conceptuses secrete estrogens (E2), interleukin 1 beta 2 (IL1B2), and prostaglandins (PGs) during the period of rapid trophoblast elongation and establishment of pregnancy. Previous studies established that IL1B2 is essential for rapid conceptus elongation, whereas E2 is not essential for conceptus elongation or early maintenance of the corpora lutea. The objective of the present study was to determine if conceptus expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and release of PG are important for early development and establishment of pregnancy. To understand the role of PTGS2 in conceptus elongation and pregnancy establishment, a loss-of-function study was conducted by editing PTGS2 using CRISPR/Cas9 technology. Wild-type (PTGS2+/+) and null (PTGS2-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer. Immunolocalization of PTGS2 and PG production was absent in cultured PTGS2-/- blastocysts on day 7. PTGS2+/+ and PTGS2-/- blastocysts were transferred into surrogate gilts, and the reproductive tracts were collected on either days 14, 17, or 35 of pregnancy. After flushing the uterus on days 14 and 17, filamentous conceptuses were cultured for 3 h to determine PG production. Conceptus release of total PG, prostaglandin F2⍺ (PGF2α), and PGE in culture media was lower with PTGS2-/- conceptuses compared to PTGS2+/+ conceptuses. However, the total PG, PGF2α, and PGE content in the uterine flushings was not different. PTGS2-/- conceptus surrogates allowed to continue pregnancy were maintained beyond 30 days of gestation. These results indicate that pig conceptus PTGS2 is not essential for early development and establishment of pregnancy in the pig.


Subject(s)
Blastocyst/metabolism , Cyclooxygenase 2/metabolism , Embryo Implantation/physiology , Embryonic Development/physiology , Endometrium/metabolism , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Cyclooxygenase 2/genetics , Dinoprost/metabolism , Dinoprostone/metabolism , Female , Gene Expression Regulation, Developmental , Nuclear Transfer Techniques , Pregnancy , Swine
11.
Mol Reprod Dev ; 87(1): 152-160, 2020 01.
Article in English | MEDLINE | ID: mdl-31803983

ABSTRACT

During preimplantation development, the embryo undergoes two consecutive lineages specifications. The first cell fate decision determines which cells give rise to the trophectoderm (TE) and the inner cell mass (ICM). Subsequently, the ICM differentiates into hypoblast and epiblast, the latter giving rise to the embryo proper. The transcription factors that govern these cell fate decisions have been extensively studied in the mouse, but are still poorly understood in other mammalian species. In the present study, the role of NANOG in the formation of the epiblast and maintenance of pluripotency in the bovine embryo was investigated. Using a CRISPR-Cas9 approach, guide RNAs were designed to target exon 2, resulting in a functional deletion of bovine NANOG at the zygote stage. Disruption of NANOG resulted in the embryos that form a blastocoel and an ICM composed of hypoblast cells. Furthermore, NANOG-null embryos showed lower expression of epiblast cell markers SOX2 and HA2AFZ, and hypoblast marker GATA6; without affecting the expression of TE markers CDX2 and KRT8. Results indicate that NANOG, has no apparent role in segregation or maintenance of the TE, but it is required to derive and maintain the pluripotent epiblast and during the second lineage commitment in the bovine embryo.


Subject(s)
Cell Lineage/genetics , Embryo, Mammalian/metabolism , Germ Layers/metabolism , Nanog Homeobox Protein/metabolism , Animals , CRISPR-Cas Systems , Cattle , Exons , Female , Fertilization in Vitro/methods , GATA6 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Genotype , Nanog Homeobox Protein/genetics , RNA, Guide, Kinetoplastida , Zygote/metabolism
12.
Biol Reprod ; 101(1): 148-161, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31066888

ABSTRACT

The proposed signal for maternal recognition of pregnancy in pigs is estrogen (E2), produced by the elongating conceptuses between days 11 to 12 of pregnancy with a more sustained increase during conceptus attachment and placental development on days 15 to 30. To understand the role of E2 in porcine conceptus elongation and pregnancy establishment, a loss-of-function study was conducted by editing aromatase (CYP19A1) using CRISPR/Cas9 technology. Wild-type (CYP19A1+/+) and (CYP19A1-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer, which were transferred into recipient gilts. Elongated and attaching conceptuses were recovered from gilts containing CYP19A1+/+ or CYP19A1-/- embryos on day 14 and 17 of pregnancy. Total E2 in the uterine flushings of gilts with CYP19A1-/- embryos was lower than recipients containing CYP19A1+/+ embryos with no difference in testosterone, PGF2α, or PGE2 on either day 14 or 17. Despite the loss of conceptus E2 production, CYP19A1-/- conceptuses were capable of maintaining the corpora lutea. However, gilts gestating CYP19A1-/- embryos aborted between days 27 and 31 of gestation. Attempts to rescue the pregnancy of CYP19A1-/- gestating gilts with exogenous E2 failed to maintain pregnancy. However, CYP19A1-/- embryos could be rescued when co-transferred with embryos derived by in vitro fertilization. Endometrial transcriptome analysis revealed that ablation of conceptus E2 resulted in disruption of a number biological pathways. Results demonstrate that intrinsic E2 conceptus production is not essential for pre-implantation development, conceptus elongation, and early CL maintenance, but is essential for maintenance of pregnancy beyond 30 days .


Subject(s)
Embryo, Mammalian/metabolism , Estrogens/metabolism , Pregnancy Maintenance/physiology , Pregnancy, Animal , Recognition, Psychology/physiology , Swine , Animals , Animals, Genetically Modified , Aromatase/genetics , Aromatase/metabolism , Cells, Cultured , Cloning, Organism/veterinary , Embryo Culture Techniques/veterinary , Embryo Transfer/veterinary , Embryo, Mammalian/chemistry , Embryonic Development/drug effects , Estrogens/pharmacology , Female , Fertilization/physiology , Maternal-Fetal Exchange/drug effects , Maternal-Fetal Exchange/physiology , Nuclear Transfer Techniques , Pregnancy , Pregnancy Maintenance/drug effects , Recognition, Psychology/drug effects , Swine/embryology , Swine/genetics , Swine/metabolism
13.
Mol Reprod Dev ; 86(5): 558-565, 2019 05.
Article in English | MEDLINE | ID: mdl-30779254

ABSTRACT

Genetically engineered pigs serve as excellent biomedical and agricultural models. To date, the most reliable way to generate genetically engineered pigs is via somatic cell nuclear transfer (SCNT), however, the efficiency of cloning in pigs is low (1-3%). Somatic cells such as fibroblasts frequently used in nuclear transfer utilize the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation for efficient energy production. The metabolism of somatic cells contrasts with cells within the early embryo, which predominately use glycolysis. We hypothesized that fibroblast cells could become blastomere-like if mitochondrial oxidative phosphorylation was inhibited by hypoxia and that this would result in improved in vitro embryonic development after SCNT. In a previous study, we demonstrated that fibroblasts cultured under hypoxic conditions had changes in gene expression consistent with increased glycolytic/gluconeogenic metabolism. The goal of this pilot study was to determine if subsequent in vitro embryo development is impacted by cloning porcine embryonic fibroblasts cultured in hypoxia. Here we demonstrate that in vitro measures such as early cleavage, blastocyst development, and blastocyst cell number are improved (4.4%, 5.5%, and 17.6 cells, respectively) when donor cells are cultured in hypoxia before nuclear transfer. Survival probability was increased in clones from hypoxic cultured donors compared to controls (8.5 vs. 4.0 ± 0.2). These results suggest that the clones from donor cells cultured in hypoxia are more developmentally competent and this may be due to improved nuclear reprogramming during somatic cell nuclear transfer.


Subject(s)
Blastocyst/cytology , Cell Culture Techniques/methods , Cell Hypoxia/physiology , Fibroblasts/cytology , Nuclear Transfer Techniques , Animals , Blastocyst/physiology , Cells, Cultured , Cellular Reprogramming/physiology , Cloning, Organism , Embryo, Mammalian/cytology , Embryonic Development/physiology , Female , Fibroblasts/physiology , Pilot Projects , Pregnancy , Swine
14.
Transgenic Res ; 27(2): 167-178, 2018 04.
Article in English | MEDLINE | ID: mdl-29516259

ABSTRACT

Genetically engineered pigs are often created with a targeting vector that contains a loxP flanked selectable marker like neomycin. The Cre-loxP recombinase system can be used to remove the selectable marker gene from the resulting offspring or cell line. Here is described a new method to remove a loxP flanked neomycin cassette by direct zygote injection of an mRNA encoding Cre recombinase. The optimal concentration of mRNA was determined to be 10 ng/µL when compared to 2 and 100 ng/µL (P < 0.0001). Development to the blastocyst stage was 14.1% after zygote injection with 10 ng/µL. This method successfully removed the neomycin cassette in 81.9% of injected in vitro derived embryos; which was significantly higher than the control (P < 0.0001). Embryo transfer resulted in the birth of one live piglet with a Cre deleted neomycin cassette. The new method described can be used to efficiently remove selectable markers in genetically engineered animals without the need for long term cell culture and subsequent somatic cell nuclear transfer.


Subject(s)
Genetic Engineering/methods , Genetic Vectors/antagonists & inhibitors , Integrases/genetics , RNA/administration & dosage , Animals , Genetic Vectors/chemistry , Integrases/drug effects , Neomycin/chemistry , RNA/genetics , Recombination, Genetic , Swine , Zygote/cytology , Zygote/drug effects
15.
Mol Reprod Dev ; 85(4): 290-302, 2018 04.
Article in English | MEDLINE | ID: mdl-29392839

ABSTRACT

Somatic cell nuclear transfer is a valuable technique for the generation of genetically engineered animals, however, the efficiency of cloning in mammalian species is low (1-3%). Differentiated somatic cells commonly used in nuclear transfer utilize the tricarboxylic acid cycle and cellular respiration for energy production. Comparatively the metabolism of somatic cells contrasts that of the cells within the early embryos which predominately use glycolysis. Early embryos (prior to implantation) are evidenced to exhibit characteristics of a Warburg Effect (WE)-like metabolism. We hypothesized that pharmacologically driven fibroblast cells can become more blastomere-like and result in improved in vitro embryonic development after SCNT. The goals were to determine if subsequent in vitro embryo development is impacted by (1) cloning pharmacologically treated donor cells pushed to have a WE-like metabolism or (2) culturing non-treated donor clones with pharmaceuticals used to push a WE-like metabolism. Additionally, we investigated early gestational survival of the donor-treated clone embryos. Here we demonstrate that in vitro development of clones is not hindered by pharmacologically treating either the donor cells or the embryos themselves with CPI, PS48, or the combination of these drugs. Furthermore, these experiments demonstrate that early embryos (or at least in vitro produced embryos) have a low proportion of mitochondria which have high membrane potential and treatment with these pharmaceuticals does not further alter the mitochondrial function in early embryos. Lastly, we show that survival in early gestation was not different between clones from pharmacologically induced WE-like donor cells and controls.


Subject(s)
Cloning, Organism , Embryo, Mammalian/embryology , Embryonic Development , Nuclear Transfer Techniques , Animals , Female , Pregnancy , Swine
16.
Proc Natl Acad Sci U S A ; 115(2): 307-312, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279391

ABSTRACT

Conceptus expansion throughout the uterus of mammalian species with a noninvasive epitheliochorial type of placentation is critical establishing an adequate uterine surface area for nutrient support during gestation. Pig conceptuses undergo a unique rapid morphological transformation to elongate into filamentous threads within 1 h, which provides the uterine surface to support development and maintain functional corpora lutea through the production of estrogen. Conceptus production of a unique interleukin 1ß, IL1B2, temporally increases during the period of trophoblast remodeling during elongation. CRISPR/Cas9 gene editing was used to knock out pig conceptus IL1B2 expression and the secretion of IL1B2 during the time of conceptus elongation. Trophoblast elongation occurred on day 14 in wild-type (IL1B2+/+) conceptuses but did not occur in ILB2-null (IL1B2-/-) conceptuses. Although the morphological transition of IL1B2-/- conceptuses was inhibited, expression of a number of conceptus developmental genes was not altered. However, conceptus aromatase expression and estrogen secretion were decreased, indicating that IL1B2 may be involved in the spatiotemporal increase in conceptus estrogen synthesis needed for the establishment of pregnancy in the pig and may serve to regulate the proinflammatory response of endometrium to IL1B2 during conceptus elongation and attachment to the uterine surface.


Subject(s)
Cell Proliferation/genetics , Interleukin-1beta/genetics , Trophoblasts/metabolism , Uterus/metabolism , Animals , CRISPR-Cas Systems , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Endometrium/metabolism , Estrogens/metabolism , Female , Gene Expression Regulation, Developmental , Interleukin-1beta/metabolism , Pregnancy , Swine , Time Factors , Trophoblasts/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...