Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Reg Anesth Pain Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960591

ABSTRACT

BACKGROUND: Spinal cord stimulation (SCS) provides pain relief for some patients with persistent spinal pain syndrome type 2 (PSPS 2), but the precise mechanisms of action and prognostic factors for a favorable pain response remain obscure. This in vivo human genome-wide association study provides some pathophysiological clues. METHODS: We performed a high-density oligonucleotide microarray analysis of serum obtained from both PSPS 2 cases and pain-free controls who had undergone lower back spinal surgery at the study site. Using multivariate discriminant analysis, we tried to identify different expressions between mRNA transcripts from PSPS 2 patients relative to controls, SCS responders to non-responders, or SCS responders to themselves before starting SCS. Gene ontology enrichment analysis was used to identify the biological processes that best discriminate between the groups of clinical interest. RESULTS: Thirty PSPS 2 patients, of whom 23 responded to SCS, were evaluated together with 15 pain-free controls. We identified 11 significantly downregulated genes in serum of PSPS 2 patients compared with pain-free controls and two significantly downregulated genes once the SCS response became apparent. All were suggestive of enhanced inflammation, tissue repair mechanisms and proliferative responses among the former. We could not identify any gene differentiating patients who responded to SCS from those who did not respond. CONCLUSIONS: This study points out various biological processes that may underlie PSPS 2 pain and SCS therapeutic effects, including the modulation of neuroimmune response, inflammation and restorative processes.

2.
Eur J Pain ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943239

ABSTRACT

BACKGROUND: Differential target multiplexed spinal cord stimulation (DTM SCS) was shown to be superior to conventional SCS for treating chronic low back pain (CLBP) in subjects with persistent spinal pain syndrome with previous spinal surgery (PSPS-T2) or ineligible for it (PSPS-T1). This study reports 24-month efficacy and safety of DTM SCS vs. conventional medical management (CMM) in PSPS-T1 subjects across four European countries. METHODS: This is a prospective, multicenter, open-label, randomized, controlled trial with optional crossover. Subjects randomized 1:1 to DTM SCS or CMM. Primary endpoint was responder rate (% subjects reporting ≥50% CLBP relief) at 6 months. A superiority test compared responder rates between treatments. CLBP and leg pain levels, functional disability, quality of life (QoL), patient satisfaction and global impression of change were evaluated for 24 months. A Composite Responder Index (CRI) was obtained using CLBP relief, disability and QoL. Incidence of study-related adverse events evaluated safety. RESULTS: A total of 55 and 57 subjects were randomized to DTM SCS and CMM respectively. DTM SCS was superior, with CLBP responder rates ≥80% and CLBP relief >5.6 cm (>70% reduction) through the 24-month follow-up. Improvements with DTM SCS in other outcomes were sustained. The CRI was >80% for DTM SCS through 24 months. Opioid medication intake decreased in subjects treated with DTM SCS. Most patients treated with DTM SCS felt satisfied and improved at the end of the study. Safety was congruent with other studies. CONCLUSION: DTM SCS is efficacious and safe during 24 months for the treatment of CLBP and leg pain in PSPS-T1 patients ineligible for spine surgery. SIGNIFICANCE STATEMENT: This randomized controlled trial shows that Differential Target Multiplexed SCS (DTM SCS) is an effective and safe long-term treatment for PSPS type 1 patients suffering from axial low back pain with or without leg pain and who are ineligible for spinal surgery. Currently, CMM treatments are their only option and provide limited benefits. Besides superior pain relief, DTM SCS provides significant improvements in functional disability, quality of life, high levels of satisfaction and perceived impression of change.

3.
Pain Physician ; 27(4): 213-222, 2024 May.
Article in English | MEDLINE | ID: mdl-38805527

ABSTRACT

BACKGROUND: There are limited therapeutic options to treat complex regional pain syndrome (CRPS). Spinal cord stimulation and dorsal root ganglion stimulation are proven therapies for treating chronic low limb pain in CRPS patients. There is limited evidence that stimulation of dorsal nerve roots can also provide relief of lower limb pain in these patients. OBJECTIVES: To demonstrate that electrical stimulation of dorsal nerve roots via epidural lead placement provides relief of chronic lower limb pain in patients suffering from CRPS. STUDY DESIGN: Prospective, open label, single arm, multi-center study. SETTING: The study was performed at the Center for Interventional Pain and Spine (Exton, PA), Millennium Pain Center (Bloomington, IL), and the Carolinas Pain Center (Huntersville, NC). It was approved by the Western Institutional Review Board-Copernicus Group Institutional Review Board and is registered at clinicaltrials.gov (NCT03954080). METHODS: Sixteen patients with intractable chronic severe lower limb pain associated with CRPS were enrolled in the study. A standard trial period to evaluate a patients' response to stimulation of the dorsal nerve roots was conducted over 3 to 10-days. Patients that obtained 50% or greater pain relief during the trial period underwent permanent implantation of a neurostimulation system. The primary outcome was the evaluated pain level after 3 months of device activation, based on NRS pain score relative to baseline. Patients were followed up for 6 months after activation of the permanently implanted system. RESULTS: At the primary endpoint, patients reported a significant (P = 0.0006) reduction in pain of 3.3 points, improvement in quality of life, improved neuropathic pain characteristics, improved satisfaction, and an overall perception of improvement with the therapy. Improvements were sustained throughout the duration of the study up to the final 6-month visit. LIMITATIONS: Due to the COVID-19 pandemic occurring during patient enrollment, only 16 patients were enrolled and trialed, with 12 being permanently implanted. Nine were able to complete the end of study evaluation at 6 months. CONCLUSIONS: The results of this short feasibility study confirm the functionality, effectiveness, and safety of intraspinal stimulation of dorsal nerve roots in patients with intractable chronic lower limb pain due to CRPS using commercially approved systems and conventional parameters.


Subject(s)
Chronic Pain , Complex Regional Pain Syndromes , Electric Stimulation Therapy , Feasibility Studies , Spinal Nerve Roots , Humans , Prospective Studies , Complex Regional Pain Syndromes/therapy , Chronic Pain/therapy , Female , Male , Middle Aged , Adult , Electric Stimulation Therapy/methods , Lower Extremity , Aged , Pain, Intractable/therapy , Treatment Outcome , Pain Management/methods
4.
Neuromodulation ; 26(7): 1441-1449, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37516956

ABSTRACT

BACKGROUND: Spinal cord stimulation (SCS) provides pain relief for most patients with persistent spinal pain syndrome type 2 (PSPS 2). Evidence is mounting on molecular changes induced by SCS as one of the mechanisms to explain pain improvement. We report the SCS effect on serum protein expression in vivo in patients with PSPS 2. MATERIALS AND METHODS: Serum proteins were identified and quantified using mass spectrometry. Proteins with significantly different expression among patients with PSPS 2 relative to controls, responders, and nonresponders to SCS, or significantly modulated by SCS relative to baseline, were identified. Those most correlated with the presence and time course of pain were selected using multivariate discriminant analysis. Bioinformatic tools were used to identify related biological processes. RESULTS: Thirty patients with PSPS 2, of whom 23 responded to SCS, were evaluated, together with 14 controls with no pain who also had undergone lumbar spinal surgery. A significant improvement in pain intensity, disability, and quality of life was recorded among responders. Five proteins differed significantly at baseline between patients with PSPS 2 and controls, with three proteins, mostly involved in immune processes and inflammation, being downregulated and two, mostly involved in vitamin metabolism, synaptic transmission, and restorative processes, being upregulated. In addition, four proteins, mostly related to immune processes and inflammation, decreased significantly, and three, mostly related to iron metabolism and containment of synaptic sprouting, increased significantly during SCS. CONCLUSION: This study identifies various biological processes that may underlie PSPS 2 pain and SCS therapeutic effects, including the modulation of neuroimmune response and inflammation, synaptic sprouting, vitamin and iron metabolism, and restorative processes.

5.
Biology (Basel) ; 12(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37106738

ABSTRACT

There is limited research on the association between the extracellular matrix (ECM) and chronic neuropathic pain. The objective of this study was twofold. Firstly, we aimed to assess changes in expression levels and the phosphorylation of ECM-related proteins due to the spared nerve injury (SNI) model of neuropathic pain. Secondly, two modalities of spinal cord stimulation (SCS) were compared for their ability to reverse the changes induced by the pain model back toward normal, non-injury levels. We identified 186 proteins as ECM-related and as having significant changes in protein expression among at least one of the four experimental groups. Of the two SCS treatments, the differential target multiplexed programming (DTMP) approach reversed expression levels of 83% of proteins affected by the pain model back to levels seen in uninjured animals, whereas a low-rate (LR-SCS) approach reversed 67%. There were 93 ECM-related proteins identified in the phosphoproteomic dataset, having a combined 883 phosphorylated isoforms. DTMP back-regulated 76% of phosphoproteins affected by the pain model back toward levels found in uninjured animals, whereas LR-SCS back-regulated 58%. This study expands our knowledge of ECM-related proteins responding to a neuropathic pain model as well as providing a better perspective on the mechanism of action of SCS therapy.

6.
Pain Pract ; 23(6): 639-646, 2023 07.
Article in English | MEDLINE | ID: mdl-37067033

ABSTRACT

BACKGROUND: Spinal cord stimulation (SCS) has been proven to be an effective treatment for patients suffering from intractable chronic neuropathic pain. Recent advances in the field include the utilization of programs that multiplex various signals to target different neural structures in the dorsal spinal cord associated with the painful area. Preclinical studies have been fundamental in understanding the mechanism by which this differential target multiplexed programming (DTMP) SCS approach works. Transcriptomic- and proteomic-based studies demonstrated that DTMP can modulate expression levels of genes and proteins involved in pain-related processes that have been affected by a neuropathic pain model. This work studied the effect of the intensity of DTMP signals on mechanical hypersensitivity and cell-specific transcriptomes. METHODS: The spared nerve injury model (SNI) of neuropathic pain was induced in 20 animals which were 1:1 randomized into two SCS groups in which the intensity of the DTMP was adjusted to either 70% or 40% of the motor threshold (MT). SCS was applied continuously for 48 h via a quadripolar lead implanted in the dorsal epidural space of animals. Controls, which included a group of implanted SNI animals that received no SCS and a group of animals naive to the SNI, were assessed in parallel to the SCS groups. Mechanical hypersensitivity was assessed before SNI, before SCS, and at 48 h of SCS. At the end of SCS, the stimulated segment of the dorsal spinal cord was dissected and subjected to RNA sequencing to quantify expression levels in all experimental groups. Differential effects were assessed via fold-change comparisons of SCS and naive groups versus the no-SCS group for transcriptomes specific to neurons and glial cells. Standard statistical analyses were employed to assess significance of the comparisons (p < 0.05). RESULTS: SCS treatments provided significant improvement in mechanical sensitivity relative to no SCS treatment. However, the change in the intensity did not provide a significant difference in the improvement of mechanical sensitivity. DTMP regulated expression levels back toward those found in the naive group in the cell-specific transcriptomes analyzed. There were no significant differences related to the intensity of the stimulation in terms of the percentage of genes in each transcriptome in which expression levels were reversed toward the naive state. CONCLUSIONS: DTMP when applied at either 40% MT or 70% MT provided similar reduction of pain-like behavior in rats and similar effects in neuron- and glia-specific transcriptomes.


Subject(s)
Neuralgia , Spinal Cord Stimulation , Rats , Animals , Pain Threshold/physiology , Pain Measurement , Proteomics , Thymidine Monophosphate/metabolism , Disease Models, Animal , Neuralgia/therapy , Neuralgia/metabolism , Spinal Cord/physiology
7.
Neuromodulation ; 26(1): 68-77, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35961888

ABSTRACT

OBJECTIVES: Rats are commonly used for translational pain and spinal cord stimulation (SCS) research. Although many SCS parameters are configured identically between rats and humans, stimulation amplitudes in rats are often programmed relative to visual motor threshold (vMT). Alternatively, amplitudes may be programmed relative to evoked compound action potential (ECAP) thresholds (ECAPTs), a sensed measure of neural activation. The objective of this study was to characterize ECAPTs, evoked compound muscle action potential thresholds (ECMAPTs), and vMTs with clinically relevant SCS modalities. MATERIALS AND METHODS: We implanted ten anesthetized rats with two quadripolar epidural SCS leads: one for stimulating in the lumbar spine, and another for sensing ECAPs in the thoracic spine. We then delivered two SCS paradigms to the rats. The first used 50-Hz SCS with 50-, 100-, 150-, and 200-µs pulse widths (PWs), whereas the second used a 50-Hz, 150-µs PW low-rate program (LRP) multiplexed to a 1200-Hz, 50-µs PW high-rate program (HRP). We increased SCS amplitudes up to the vMT in the first paradigm, and in the second, we increased HRP amplitudes up to the HRP ECAPT with a fixed amplitude (70% of the vMT) LRP. For each test case, we captured ECAPTs, ECMAPTs, and vMTs from each rat. RESULTS: vMTs were 3.0 ± 0.7 times greater than ECAPTs, with vMTs marginally (3.0 ± 3.6%) greater than ECMAPTs (mean ± SD) across all PWs with the first paradigm. With the second paradigm, we noted a negligible increase (3.6 ± 6.2%) on the LRP ECAP as HRP amplitudes were increased. CONCLUSIONS: Our results demonstrate reasonable levels of neural activation in anesthetized rats with SCS amplitudes appropriately programmed relative to vMT or ECMAPT when using clinically relevant SCS modalities. Furthermore, we demonstrate the feasibility of ECAP recording in rats with multiplexed HRP SCS.


Subject(s)
Spinal Cord Stimulation , Spinal Cord , Humans , Rats , Animals , Action Potentials/physiology , Spinal Cord/physiology , Evoked Potentials/physiology , Spinal Cord Stimulation/methods , Lumbar Vertebrae
8.
Brain Sci ; 12(11)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36358430

ABSTRACT

This research focused on the development of an astrocyte cell model system (C6 glioma) for the assessment of molecular changes in response to cathodic passively balanced pulsed electrical stimulation at a rate of 50 Hz (60 µs duration, 0.15 mA intensity). Cells treated with selected neurotransmitters (glutamate, adenosine, D-serine, and γ-aminobutyric acid) were monitored (using specific fluorescent probes) for changes in levels of intracellular nitric oxide, calcium ions, and/or chloride. ES exerted an inhibitory effect on NO, increased calcium and had no effect on chloride. Using this model, cells can be assessed qualitatively and quantitatively for changes and these changes can be correlated with the putative molecular effects that electrical stimulation has on astrocytes and their role in glia-mediated diseases. This model system allows for faster and cheaper experiments than those involving animal models due to the potential to easily vary the conditions, reduce the number of variables (especially problematic in animal models), and closely monitor the cellular effects.

9.
J Pain Res ; 15: 2857-2866, 2022.
Article in English | MEDLINE | ID: mdl-36156899

ABSTRACT

Introduction: Spinal cord stimulation (SCS) has been used for decades to treat neuropathic pain conditions with limited understanding of its mechanisms of action. The mTOR pathway is a well-known co-factor in chronic pain and has not been previously linked to SCS therapy. Proteomic and phosphorylation analyses allow capturing a broad view of tissue response to an injury model and subsequent therapies such as SCS. Here, we evaluated the effect of differential target multiplexed SCS programming (DTMP) and traditional low-rate spinal cord stimulation (LR-SCS) on the mTOR pathway using proteomic and phosphoproteomic analyses. Methods: The spared nerve injury (SNI) model of neuropathic pain in animals was established followed by continuous treatment with either DTMP or LR-SCS for 48 hours. Control groups included sham-stimulated (No-SCS) and uninjured animals (No-SNI). Proteins were extracted from spinal cord tissue removed post-stimulation and subjected to liquid chromatography/tandem mass spectrometry to assess changes in protein expression and states of phosphorylation. Bioinformatics tools and literature were used to identify mTOR-related proteins in the various groups. Results: Over 7000 proteins were identified and filtered to find 1451 and 705 proteins significantly affected by DTMP and LR-SCS (p < 0.05), respectively, relative to No-SCS. Literature and bioinformatic tools yielded 192 mTOR-related proteins that were cross-referenced to the list of DTMP and LR-SCS affected proteins. Of these proteins, 49 were found in the proteomic dataset. Eight of these proteins showed a significant response to the pain model, 25 were significantly modulated by DTMP, and 8 by LR-SCS. Phosphoproteomic analyses yielded 119 mTOR-related phosphoproteins affected by the injury model with a 66% reversal following DTMP versus a 58% reversal by LR-SCS. Conclusion: Proteomic and phosphoproteomic analyses support the hypothesis that DTMP, and to a lesser extent LR-SCS, reverse injury induced changes of the mTOR pathway while treating neuropathic pain.

10.
Front Neurol ; 13: 820864, 2022.
Article in English | MEDLINE | ID: mdl-35463130

ABSTRACT

Background: Severe coronavirus disease 2019 (COVID-19) is characterized, in part, by an excessive inflammatory response. Evidence from animal and human studies suggests that vagus nerve stimulation can lead to reduced levels of various biomarkers of inflammation. We conducted a prospective randomized controlled study (SAVIOR-I) to assess the feasibility, efficacy, and safety of non-invasive vagus nerve stimulation (nVNS) for the treatment of respiratory symptoms and inflammatory markers among patients who were hospitalized for COVID-19 (ClinicalTrials.gov identifier: NCT04368156). Methods: Participants were randomly assigned in a 1:1 allocation to receive either the standard of care (SoC) alone or nVNS therapy plus the SoC. The nVNS group received 2 consecutive 2-min doses of nVNS 3 times daily as prophylaxis. Efficacy and safety were evaluated via the incidence of specific clinical events, inflammatory biomarker levels, and the occurrence of adverse events. Results: Of the 110 participants who were enrolled and randomly assigned, 97 (nVNS, n = 47; SoC, n = 50) had sufficient available data and comprised the evaluable population. C-reactive protein (CRP) levels decreased from baseline to a significantly greater degree in the nVNS group than in the SoC group at day 5 and overall (i.e., all postbaseline data points collected through day 5, combined). Procalcitonin level also showed significantly greater decreases from baseline to day 5 in the nVNS group than in the SoC group. D-dimer levels were decreased from baseline for the nVNS group and increased from baseline for the SoC group at day 5 and overall, although the difference between the treatment groups did not reach statistical significance. No significant treatment differences were seen for clinical respiratory outcomes or any of the other biochemical markers evaluated. No serious nVNS-related adverse events occurred during the study. Conclusions: nVNS therapy led to significant reductions in levels of inflammatory markers, specifically CRP and procalcitonin. Because nVNS has multiple mechanisms of action that may be relevant to COVID-19, additional research into its potential use earlier in the course of COVID-19 and its potential to mitigate some of the symptoms associated with post-acute sequelae of COVID-19 is warranted.

11.
J Pain Res ; 15: 895-907, 2022.
Article in English | MEDLINE | ID: mdl-35392631

ABSTRACT

Introduction: Neuropathic pain initiates an interplay of pathways, involving MAP kinases and NFκB-signaling, leading to expression of immune response factors and activation and inactivation of proteins via phosphorylation. Neuropathic pain models demonstrated that spinal cord stimulation (SCS) may provide analgesia by modulating gene and protein expression in neuroinflammatory processes. A differential target multiplexed programming (DTMP) approach was more effective than conventional SCS treatments at modulating these. This work investigated the effect of DTMP and low rate SCS (LR-SCS) on proteins associated with MAP kinases and NFκB-signaling relevant to neuroinflammation. Methods: Animals subjected to the spared nerve injury model (SNI) of neuropathic pain were treated continuously (48h) with either DTMP or LR-SCS. No-SNI and No-SCS groups were included as controls. Proteomics and phosphoproteomics of stimulated spinal cord tissues were performed via liquid chromatography/tandem mass spectrometry. Proteins were identified from mass spectra using bioinformatics. Expression levels and fold changes (No-SCS/No-SNI and SCS/No-SCS) were obtained from spectral intensities. Results: Analyses identified 7192 proteins, with 1451 and 705 significantly changed by DTMP and LR-SCS, respectively. Eighty-one proteins, including MAP kinases, facilitating NFκB-signaling as part of inflammatory processes were identified. The pain model significantly increased expression levels of complement pathway-related proteins (LBP, NRG1, APP, CFH, C3, C5), which were significantly reversed by DTMP. Expression levels of other complement pathway-related proteins (HMGB1, S100A8, S100A9, CRP, C4) were decreased by DTMP, although not significantly affected by SNI. Other proteins (ORM1, APOE, NG2, CNTF) involved in NFκB-signaling were increased by SNI and decreased by DTMP. Expression levels of phosphorylated protein kinases involved in NFκB-signaling (including MAP kinases, PKC, MARK1) were affected by the pain model and reverse modulated by DTMP. LR-SCS modulated inflammatory-related proteins although to a lesser extent than DTMP. Conclusion: Proteomic analyses support the profound effect of the DTMP approach on neuroinflammation via MAP kinases and NFκB-mediated signaling to alleviate neuropathic pain.

12.
Mol Pain ; 18: 17448069211060181, 2022.
Article in English | MEDLINE | ID: mdl-35048719

ABSTRACT

The effect of spinal cord stimulation (SCS) using differential target multiplexed programming (DTMP) on proteins involved in the regulation of ion transport in spinal cord (SC) tissue of an animal model of neuropathic pain was evaluated in comparison to low rate (LR) SCS. Rats subjected to the spared nerve injury model (SNI) and implanted with a SCS lead were assigned to DTMP or LR and stimulated for 48 h. A No-SCS group received no stimulation, and a Sham group received no SNI or stimulation. Proteins in the dorsal ipsilateral quadrant of the stimulated SC were identified and quantified using mass spectrometry. Proteins significantly modulated by DTMP or LR relative to No-SCS were identified. Bioinformatic tools were used to identify proteins related to ion transport regulation. DTMP modulated a larger number of proteins than LR. More than 40 proteins significantly involved in the regulation of chloride (Cl-), potassium (K+), sodium (Na+), or calcium (Ca2+) ions were identified. SNI affected proteins that promote the increase of intracellular Ca2+, Na+, and K+ and decrease of intracellular Cl-. DTMP modulated proteins involved in glial response to neural injury that affect Ca2+ signaling. DTMP decreased levels of proteins related to Ca2+ transport that may result in the reduction of intracellular Ca2+. Presynaptic proteins involved in GABA vesicle formation and release were upregulated by DTMP. DTMP also upregulated postsynaptic proteins involved with elevated intracellular Cl-, while modulating proteins, expressed by astrocytes, that regulate postsynaptic Cl- inhibition. DTMP downregulated K+ regulatory proteins affected by SNI that affect neuronal depolarization, and upregulated proteins that are associated with a decrease of intracellular neuronal K+ and astrocyte uptake of extracellular K+. DTMP treatment modulated the expression of proteins with the potential to facilitate a reversal of dysregulation of ion transport and signaling associated with a model of neuropathic pain.


Subject(s)
Neuralgia , Spinal Cord Stimulation , Animals , Disease Models, Animal , Ions/metabolism , Neuralgia/metabolism , Neuralgia/therapy , Rats , Spinal Cord/metabolism , Spinal Cord Stimulation/methods
13.
Mol Pain ; 17: 1744806921999013, 2021.
Article in English | MEDLINE | ID: mdl-33626981

ABSTRACT

While numerous studies and patient experiences have demonstrated the efficacy of spinal cord stimulation as a treatment for chronic neuropathic pain, the exact mechanism underlying this therapy is still uncertain. Recent studies highlighting the importance of microglial cells in chronic pain and characterizing microglial activation transcriptomes have created a focus on microglia in pain research. Our group has investigated the modulation of gene expression in neurons and glial cells after spinal cord stimulation (SCS), specifically focusing on transcriptomic changes induced by varying SCS stimulation parameters. Previous work showed that, in rodents subjected to the spared nerve injury (SNI) model of neuropathic pain, a differential target multiplexed programming (DTMP) approach provided significantly better relief of pain-like behavior compared to high rate (HRP) and low rate programming (LRP). While these studies demonstrated the importance of transcriptomic changes in SCS mechanism of action, they did not specifically address the role of SCS in microglial activation. The data presented herein utilizes microglia-specific activation transcriptomes to further understand how an SNI model of chronic pain and subsequent continuous SCS treatment with either DTMP, HRP, or LRP affects microglial activation. Genes for each activation transcriptome were identified within our dataset and gene expression levels were compared with that of healthy animals, naïve to injury and interventional procedures. Pearson correlations indicated that DTMP yields the highest significant correlations to expression levels found in the healthy animals across all microglial activation transcriptomes. In contrast, HRP or LRP yielded weak or very weak correlations for these transcriptomes. This work demonstrates that chronic pain and subsequent SCS treatments can modulate microglial activation transcriptomes, supporting previous research on microglia in chronic pain. Furthermore, this study provides evidence that DTMP is more effective than HRP and LRP at modulating microglial transcriptomes, offering potential insight into the therapeutic efficacy of DTMP.


Subject(s)
Microglia/pathology , Neuralgia/pathology , Spinal Cord Stimulation , Animals , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Inflammation/pathology , Male , Neuralgia/genetics , Rats , Transcriptome/genetics
14.
Neuromodulation ; 24(1): 22-32, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32157770

ABSTRACT

OBJECTIVES: Spinal cord stimulation (SCS) provides relief for patients suffering from chronic neuropathic pain although its mechanism may not be as dependent on electrical interference as classically considered. Recent evidence has been growing regarding molecular changes that are induced by SCS as being a key player in reversing the pain process. Here, we observed the effect of SCS on altering protein expression in spinal cord tissue using a proteomic analysis approach. METHODS: A microlead was epidurally implanted following induction of an animal neuropathic pain model. After the model was established, stimulation was applied for 72 hours continuously followed by tissue collection and proteomic analysis via tandem mass spectroscopy. Identified proteins were run through online data bases for protein identification and classification of biological processes. RESULTS: A significant improvement in mechanical sensitivity was observed following 48 hours of SCS therapy. Proteomic analysis identified 5840 proteins, of which 155 were significantly affected by SCS. Gene ontology data bases indicated that a significant number of proteins were associated to stress response, oxidation/reduction, or extracellular matrix pathways. Additionally, many of the proteins identified also play a role in neuron-glial interactions and are involved in nociception. CONCLUSIONS: The development of an injury unbalances the proteome of the local neural tissue, neurons, and glial cells, and shifts the proteomic profile to a pain producing state. This study demonstrates the reversal of the injury-induced proteomic state by applying conventional SCS therapy. Additional studies looking at variations in electrical parameters are needed to optimize SCS.


Subject(s)
Neuralgia , Spinal Cord Stimulation , Animals , Disease Models, Animal , Humans , Neuralgia/etiology , Neuralgia/therapy , Proteomics , Spinal Cord
15.
Front Pain Res (Lausanne) ; 2: 702906, 2021.
Article in English | MEDLINE | ID: mdl-35295479

ABSTRACT

Glial cells play an essential role in maintaining the proper functioning of the nervous system. They are more abundant than neurons in most neural tissues and provide metabolic and catabolic regulation, maintaining the homeostatic balance at the synapse. Chronic pain is generated and sustained by the disruption of glia-mediated processes in the central nervous system resulting in unbalanced neuron-glial interactions. Animal models of neuropathic pain have been used to demonstrate that changes in immune and neuroinflammatory processes occur in the course of pain chronification. Spinal cord stimulation (SCS) is an electrical neuromodulation therapy proven safe and effective for treating intractable chronic pain. Traditional SCS therapies were developed based on the gate control theory of pain and rely on stimulating large Aß neurons to induce paresthesia in the painful dermatome intended to mask nociceptive input carried out by small sensory neurons. A paradigm shift was introduced with SCS treatments that do not require paresthesia to provide effective pain relief. Efforts to understand the mechanism of action of SCS have considered the role of glial cells and the effect of electrical parameters on neuron-glial interactions. Recent work has provided evidence that SCS affects expression levels of glia-related genes and proteins. This inspired the development of a differential target multiplexed programming (DTMP) approach using electrical signals that can rebalance neuroglial interactions by targeting neurons and glial cells differentially. Our group pioneered the utilization of transcriptomic and proteomic analyses to identify the mechanism of action by which SCS works, emphasizing the DTMP approach. This is an account of evidence demonstrating the effect of SCS on glia-mediated processes using neuropathic pain models, emphasizing studies that rely on the evaluation of large sets of genes and proteins. We show that SCS using a DTMP approach strongly affects the expression of neuron and glia-specific transcriptomes while modulating them toward expression levels of healthy animals. The ability of DTMP to modulate key genes and proteins involved in glia-mediated processes affected by pain toward levels found in uninjured animals demonstrates a shift in the neuron-glial environment promoting analgesia.

16.
Mol Pain ; 16: 1744806920964360, 2020.
Article in English | MEDLINE | ID: mdl-33050770

ABSTRACT

Spinal cord stimulation is a proven effective therapy for treating chronic neuropathic pain. Previous work in our laboratory demonstrated that spinal cord stimulation based on a differential target multiplexed programming approach provided significant relief of pain-like behavior in rodents subjected to the spared nerve injury model of neuropathic pain. The relief was significantly better than obtained using high rate and low rate programming. Furthermore, transcriptomics-based results implied that differential target multiplexed programming modulates neuronal-glial interactions that have been perturbed by the pain process. Although differential target multiplexed programming was developed to differentially target neurons and glial cells, our previous work did not address this. This work presents transcriptomes, specific to each of the main neural cell populations (neurons, microglia, astrocytes, and oligodendrocytes), obtained from spinal cord subjected to continuous spinal cord stimulation treatment with differential target multiplexed programming, high rate programming, or low rate programming compared with no spinal cord stimulation treatment, using the spared nerve injury model. To assess the effect of each spinal cord stimulation treatment on these cell-specific transcriptomes, gene expression levels were compared with that of healthy animals, naïve to injury and interventional procedures. Pearson correlations and cell population analysis indicate that differential target multiplexed programming yielded strong and significant correlations to expression levels found in the healthy animals across every evaluated cell-specific transcriptome. In contrast, high rate programming only yielded a strong correlation for the microglia-specific transcriptome, while low rate programming did not yield strong correlations with any cell types. This work provides evidence that differential target multiplexed programming distinctively targeted and modulated the expression of cell-specific genes in the direction of the healthy state thus supporting its previously established action on regulating neuronal-glial interaction processes in a pain model.


Subject(s)
Neuralgia/metabolism , Spinal Cord Stimulation/methods , Spinal Cord/metabolism , Spinal Cord/physiopathology , Transcriptome/genetics , Animals , Astrocytes/metabolism , Disease Models, Animal , Male , Neuralgia/genetics , Neuroglia/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Rats , Rats, Sprague-Dawley
17.
Curr Pain Headache Rep ; 24(11): 70, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32997170

ABSTRACT

PURPOSE OF REVIEW: The purpose of the present systematic review is to provide a current understanding of the mechanism of action and the evidence available to support clinical decision-making. The focus is to summarize randomized controlled trials (RCTs) and nonrandomized or observational studies of spinal cord stimulation in chronic pain to understand clinical effectiveness and the mechanism of action. RECENT FINDINGS: Several recent studies have demonstrated the benefit of spinal cord stimulation in managing chronic pain. Until recently, the mechanism of action was founded on a central paradigm derived from gate control theory, which is the need to stimulate the dorsal column of the spinal cord to generate paresthesia. The recent development of new therapies that do not rely on paresthesia has left the field without a clear mechanism of action that could serve as a strong foundation to further improve clinical outcomes. Consequently, multiple theories have emerged to explain how electrical pulse applied to the spinal cord could alleviate pain, including activation of specific supraspinal pathways, and segmental modulation of the neurological interaction. Recent systematic reviews also have shown the clinical effectiveness of spinal cord stimulation in managing chronic spinal pain, phantom limb pain, complex regional pain syndrome, and other chronic painful conditions. Spinal cord stimulation for the treatment of chronic pain is rapidly evolving with technology at its forefront. This comprehensive focused review evaluated 11 RCTs and 7 nonrandomized/observational studies which provided levels of evidence ranging from I to II.


Subject(s)
Chronic Pain/therapy , Low Back Pain/therapy , Spinal Cord Stimulation/methods , Humans , Lower Extremity , Treatment Outcome
18.
Pain Physician ; 23(4): E417-E424, 2020 07.
Article in English | MEDLINE | ID: mdl-32709188

ABSTRACT

BACKGROUND: Epidural steroid injection (ESI) is a common practice for pain treatment since 1953. In 2014, the FDA issued a warning about ESI. Studies have focused on the effect of the particle size and their ability to generate harmful aggregates. Although steroid aggregates provide longer times for reabsorption, therefore a longer anti-inflammatory effect, they are potentially harmful to the central nervous system via embolic mechanisms.Previous studies have established that steroidal aggregates with asizes over 100 mu m are potentially able to occlude blood vessels. Studies by Tiso et al and Benzon et al addressed the role of steroids on CNS adverse events, with similar outcomes. The main difference was on the role of aggregates with a size over 100 mu m, which Benzon et al. attributed to the ability of certain steroid preparations to rapidly precipitate and form large aggregates. OBJECTIVES: Studying the effect of the time elapsed between mixing the steroid preparation and injection on the number and size of aggregates with sizes above 100 mu m. STUDY DESIGN: Original study in basic science. SETTING: Basic scienceMETHODS: Steroids evaluated are commonly used in Spain for ESI: betamethasone, triamcinolone, and dexamethasone. The size and number of the aggregates was determined for undiluted commercial steroid preparations in the usual amount for a single and double dosage used for ESI.Samples were examined with a Leica TCS-SP2 microscope at the first, the fifth and the 30th minute after shaking the preparations. Aggregates observed in the different preparations were manually counted and grouped in the following size range: 0-20, 20-50, 50-100, 100-300, 300-500 and > 500 mu m.Statistical analysis was carried out using the R software. Nonparametric techniques were used in the comparison of aggregate size. Global comparison of the groups using the Kruskal-Wallis test and post-hoc comparisons using the Wilcoxon test, adjusting P-values by the Holm method for multiple comparisonsRESULTS: Aggregates present in triamcinolone and betamethasone samples were statistically larger than in dexamethasone samples. Triamcinolone suspensions produced significantly larger aggregates than betamethasone five minutes after mixing. Triamcinolone preparations produced greater particle aggregates (> 500 mu m), which were not present in dexamethasone and betamethasone preparations. LIMITATIONS: Study how the human internal factors like blood elements and spinal fluid could interact with steroids and influence the size of the aggregates formed. CONCLUSIONS: This study demonstrates that the size of the particles injected depends on the type of steroid and the time allowed between mixing and injecting. The results demonstrate that waiting longer than 5 minutes between mixing and injecting can predispose the formation of potentially harmful aggregates in triamcinolone and betamethasone samples. The presence of greater particle aggregates (> 500 mu m) may occlude some important vessels and arteries with serious adverse results. Vigorous shaking of the injectable could prevent such events. KEY WORDS: Epidural steroid injection, triamcinolone, betamethasone, dexamethasone, steroid aggregates.


Subject(s)
Particle Size , Steroids/administration & dosage , Steroids/chemistry , Betamethasone/administration & dosage , Betamethasone/chemistry , Dexamethasone/administration & dosage , Dexamethasone/chemistry , Glucocorticoids/administration & dosage , Glucocorticoids/chemistry , Humans , Injections, Epidural/methods , Microscopy/methods , Triamcinolone/administration & dosage , Triamcinolone/chemistry
19.
Trials ; 21(1): 576, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32586395

ABSTRACT

OBJECTIVES: Primary Objective: The primary objective is to reduce initiation of mechanical ventilator dependency in patients with moderate to severe CoViD- 19. This will be measured as the difference between the control group and active group for subjects admitted to the hospital for CoViD-19. Secondary Objectives: • To evaluate cytokine trends / Prevent cytokine storms • To evaluate supplemental oxygen requirements • To decrease mortality of CoViD-19 patients • Delay onset of ventilation TRIAL DESIGN: The study is a single centre, 2-arm, prospective, randomized (ratio 1:1), controlled trial with parallel groups design to compare the reduction of respiratory distress in a CoViD-19 population, using the intervention of the gammaCore®-Sapphire device plus standard of care (active) vs. standard of care alone (SoC) - the control group. The gammaCore® treatments will be used acutely and prophylactically. The active and control groups will be matched for disease and severity. PARTICIPANTS: i. Inclusion Criteria The subjects have to meet all of the following criteria to be eligible to enter the trial: 1.Patient older than 18 years2.Been tested positive or suspected/presumed positive for CoViD-19 Has a cough, shortness of breath or respiratory O2 Saturation less than or equal to 92% without need for mechanical ventilation or acute respiratory failure 3.Agree to use the gammaCore®-Sapphire device as intended and to follow all of the requirements of the study including recording required study data4.Patient is able to provide signed and witnessed Informed Consent ii. Exclusion Criteria Subjects meeting any of the following criteria cannot be included in this research study: 1.Pregnant women2.On home/therapy oxygen (i.e. for patients with Chronic Obstructive Pulmonary Disease) at baseline prior to development of CoViD-193.Patient already enrolled in a clinical trial using immunotherapeutic regimen for CoViD-194.History of aneurysm, intracranial hemorrhage, brain tumors, or significant head trauma5.Known or suspected severe atherosclerotic cardiovascular disease, severe carotid artery disease (eg, bruits or history of transient ischemic attack or cerebrovascular accident), congestive heart failure, known severe coronary artery disease, or recent myocardial infarction6.Uncontrolled high blood pressure (>140/90)7.Current implantation of an electrical and/or neurostimulator device, including but not limited to a cardiac pacemaker or defibrillator, vagal neurostimulator, deep brain stimulator, spinal stimulator, bone growth stimulator, or cochlear implant8.Current implantation of metal cervical spine hardware or a metallic implant near the gammaCore stimulation site9.Belongs to a vulnerable population or has any condition such that his or her ability to provide informed consent, comply with the follow-up requirements, or provide self-assessments is compromised (e.g. homeless, developmentally disabled and prisoner) Participants will be recruited from Hospital Clínico Universitario de Valencia in Spain. INTERVENTION AND COMPARATOR: Intervention: Prophylactic: Administer 2 doses (at 2 minutes each) of gammaCore®-Sapphire, one dose on each side of the neck scheduled three times a day (morning, mid-day and 1 hour before bed at night).Acute respiratory failure or shortness of breath: Administer 2 doses (at 2 minutes each) of gammaCore®-Sapphire, one on each side of the neck. If shortness of breath (SOB) persists 20 minutes after the start of the first treatment, a second dose will be administered. Max doses per day is 9 or 18 stimulations.Plus standard of care Control: Standard of care: oxygen therapy, antibiotics and ventilatory support if necessary depending on the clinic MAIN OUTCOMES: Primary Endpoint: Initiation of mechanical ventilation, from randomization until ICU admission or hospital discharge, whatever occurs first Secondary Endpoints: Safety; ascertainment of Adverse Effects/Serious Adverse Events, from randomisation to ICU admission or hospital discharge, whatever occurs firstCytokine Storm measured by: Tumor necrosis factor α, Interleukin 6, Interleukin 1ß. Days 1,3,5,10,15 and/or at hospital dischargeMortality and/or need for Critical Care admission, from randomisation until ICU admission or hospital discharge, whatever occurs first,O2 saturation levels , from randomization until ICU admission or hospital discharge, whatever occurs firstNeed for supplemental oxygen, from randomisation until ICU admission or hospital discharge, whatever occurs first RANDOMISATION: The patients are classified according to their oxygen levels as mild, moderate and severe and randomized according to their classification to the intervention and control in a ratio of 1:1. The randomization will be stratified for gender and age. BLINDING (MASKING): This is an open label study, it is not possible to blind the participants and healthcare providers to the intervention. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The total number of patients to be included in the study is 90, with 45 in each study group TRIAL STATUS: The protocol version is 8.0 from 07th April 2020. The recruitment began 20th April 2020 and is expected to be complete 31st July 2020. TRIAL REGISTRATION: The study is registered in clinicaltrials.gov on 29th April 2020 with the identification number: NCT04368156 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , Vagus Nerve Stimulation/instrumentation , COVID-19 , Humans , Intensive Care Units , Pandemics , Prospective Studies , Respiration, Artificial , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...